
OPTIMIZED SYSTEMS SOFTWARE

OSS BASIC A+

for the ATARI 800 (R)

COPYRICHT (C) 1981, OSS

MAY 1981

Version 3. 1

ABOUT THIS mm.

This BA8XC A->- «Mnu«I is int«n4«d as «n "add-on" or appondix
to tho "BASIC REFERENCE MANUAL" suppliod by Atarii Inc.
Hako sura that your BASIC REFERENCE MANUAL Is Atari part
nuflibar C-019307. REV. 1 !

>

KTTINQ STARTED

To usa BASIC A*- Mith 08/A*:

Place tha OS/A-«> sMistar disk in driva 1 and turn on
tha powar in tha sasia aannar usad to boot an
Atari disk.

In rasponsa to tha OS/A* prompt "Dl: "< simply typa
in "BASIC CraturnS" and BASIC A-*- will load and run.

If you eiit from BASIC A-«- to OS/A^ (via DOS or CP
commands or via tha RESET kay)> you may return
to BASIC A+'s warmstart point by simply entering
RUN to OS/A-»-. NOTE: see OS/A* manual for circumstanc
under which this does not work. If necessary*
you may usa 'RUN addr' from OS/A-t- to enter at BASIC A-»-

coldstart or warmstart address. See table belou for
those addresses.

To use BASIC A+ with Atari's DOS:

Boot an Atari master diskette* and enter the Atari
menu 008.

Put the diskette with BASIC A-»- in a disk drive and
use the Atari LOAD BINARY FILE from the menu to load
BASIC A+.

Usa the Atari RUN AT ADDRESS menu command to do a
"coldstart" of BASIC A^-. The address to use depends
upon the amount of free RAM in your system.

If you exit BASIC A^ (via the DOS or CP commands),
you may return without losing any program currently
in memory by using the Atari menu RUN AT ADDRESS
command to do a "warmstart": Again* the warmstart
address depends upon the amount of free RAM.

size of free RAM 32k 40k 48k
coldstart address 4400 6400 8400
warmstart address 4403 6403 8403

CONTENTS

NOTE: Sections Narked with an asterisk (t) are new or

substantially changed froi standard Atari Basic.

PREFACE

1 GENERAL INFORHATIilN

Tvrainology 1

Special Notations Usod in This Manual 3
Abbroviations Usod in This Manual 4
Operating Hodas 5
Special Function Kays 5
*Arith«atic Operators 6
eOperator Precedence 7
Built-in Functions 7
Graphics 8
Sound and Oanes 8
Wraparound and Keyboard Rollover 8
Error Messages 8

2 PROQRAH DEVELQPNENT CONNANDS

BYE 9
CONT 9-A
END 9
LET 10-A
LIST 10
NEW 10
REM 10
RUN 11
STOP 11
•Advanced PrograM Development CoMiands 12-A
*TRACE/TRACEOFF 12-A
•LVAR 12-A
•LOMEM 12-A
•DEL 12-A

3 EDIT FEATURES

Screen Editing 13
Control (CTRL) Key 13
Shift Key 13

Double Key Functions 14
Cursor Control Keys 14

K«vs U««d with CTRL K«v 14
Kays Used with Shift Kay 14

Special Function Kays 14
Braak Kay 14
Escapa Kay 14

4 PROGRAM CONTROL STATEMENTS

FOR. . . TO. . . STEP / NEXT
0O8UB / RETURN
GOTO
IF. . . THEN
ON. . . OOSUB
ON. . . GOTO
RESTORE

•TRAP
«Advancad Prograai Control Statamants
*IF. . . ELSE. . . ENDIF
•WHILE / ENDWHILE

5 INPUT/OUTPUT COMMANDS

Input/Output Davicas 23
CLOAD 24
CSAVE 24
DOS and CP 25
ENTER 25
INPUT - 25
LOAD 26
LPRINT 26
NOTE 26
OPEN and CLOSE 26
POINT 28
PRINT 28
PUT and GET 28
READ and DATA 28
SAVE 29
•STATUS 29
XIO 30
Chaining Programs 30

•Advancad Input / Output CoaMsands 32-A
•INPUT "... - 32-A
•DIR 32-A
•PROTECT and UNPROTECT 32-B
•ERASE * 32-B
•RENAIC 32-B
•PRINT USING 32-C
•TAB <as a stataaiant) 32-G
•BPUT 32-H
•BGET 32_H
•RPUT 32-H
•ROET 32-1

19
16
17
18
20
20
21
22

22-A
22-A
22-B

6 FUNCTION LIBRARY

ArithMtic Functions 33
ABS 33
CLOO 33
EXP 33
INT 33
LOO 34
RND 34
SON 34
SQR 34

TrigonoMtric Functions 34
ATN 34
COS 34
SIN 35
DEO / RAO 35

Spocial Purposs Functions 35
ADR 35
FRE 35
PEEK 35
POKE 35
U8R 36

•Advanced Functions 36-A
•DPEEK / DPOKE 36-A
ERR 36-A
TAB 36-B

7 STRINGS

A8C 37
CHR» 37
LEN 38
STR« 38
VAL 38
String Manipulations 39
Advanced Strings 40-A
Substrings 40-A
FIND 40-B

8 ARRAYS AND MATRICES

DIM 41
CLR 43

9 GRAPHICS NODES AND COflflANDS

GRAPHICS 45
Graphics Mod«« 45

Mode 46
Mods 1 «nd 2 46
Mod«s 3. 5. and 7 47
Modes 4 and 6 48
Mod* 8 47

COLOR 48
DRAWTO 48
LOCATE 48
PLOT 49
POSITION 49
PUT / GET (as applied to graphics) 49
8ETC0L0R 50
XIO (spscial FILL application) 54
Assigning Colors to Toit Modss 54
Graphics Control Characters 56

10 SOUND AND GAME CONTROLLERS

SOUND 57
PADDLE 59
PTRIG 59
STICK 59
STRIG 60
•Advanced Ga«e Control 60-A

«HSTICK 60-A
VSTICK 60-A
PEN 60-A

11 ADVANCED PROGRAHMING TECHNIQUES AND INFORMATION

Mefliorif Conservation 61
PrograMsing in Machine Language 63

*Nu«bers (BASIC A-»- nuneric representation) 68-A

12 ADVANCED SYSTEM FEATURES

•SET and SYS 69
•MOVE 71

13 PLAYER / niSSILE GRAPHICS

*An Ov«rvi«M 72
•Conventions 73

figuro« PMQ-1 and Pf1G-2 74
»Tho PHO 8t«t«Mnts 79

•PMGRAPHICS 75
•PHCLR 75
•PHCOl-OR 76
•PMUIDTH 76
•PMMOVE 77
•HX88ILE 78

»Tli« Pne Functions 79
PMADR 79
BUMP 79

•PMO Rol«tod 8t«t«Mnts 80
*POKE and PEEK 80
fraVE 80
•BOET and BPUT 81
•USR 81

•Exa«pl« Playor/nissilo Graphics PROCRAHS 82

APPENDIX A

APPENDIX B * Error Messages

APPENDIX C ATASCII Character Set

APPENDIX D i Atari 400/800 Neaoru Nan* ntai A ivw/ WW nap

APPENDIX E Derived Functions

APPENDIX F Printed Versions of Control Characters

APPENDIX e Glossary

APPENDIX H User Prograas

APPENDIX I « Neiory Locations

APPENDIX J » Coipatabilities

APPENDIX K « SYNTAX SUNHARY AND KEYWORD INDEX

APPENDIX L « BASIC A+ Neiory Usaye

ERRATA AND HINOR CHANGES

This taction contiiins instructions for iMking minor cliangss and
insertions to tho Atari Basic Manual to transform it into a
BASIC A-*- Minual. 8o«o of thosa changas* howavar< ara nacassary
bacausa of arrors in tha Atari manual avan as it partains to
Atari Basic.

Tha changas balow includa two pagas to ba insartad at appropriate
spots in tha manual. Tha instructions should ba salf-axplanatoryi
consisting of a location to changa and instructions tharafor.

CHANGES

Paga 2: paragraph haadad "variab la:

"

Changa: . . advisabla not to usa a kayword. . . "< ate.
To: It is parfactly acceptable to use most keywords

in or as variable names so long as the assignment
explictly uses the word "LET". Some keywords<
howeveri are "poison"* including NOT« USZNOt
and STEP.

PAGE 4: Paragraph headed "Logical Expression"
Note: Logical expressions are a subset of arithmetic

expressions. Thus<
LET A«(B<C)

is legali as "B<C" is a logical (and thus
arithmetic) expression.

Page 6: Arithmetic Operators
Delete: First line (The ATARI >

Add: BASIC A+ uses 7 arithmetic operators:

ti Bitwise "and" of two positive integers (both<"69939)
! Bitwise "or" of two positive intergers

Pages 9 St 10 CONT and LET

Replace descriptions of these statements with those on
next two pages following* which may be inserted in
manual as pages 9-a and 10-a.

footnote: pages marked as this one is, "— information page only--",
are not part of the final combined manual but are
simply instructions for putting the manual together.

information page only

CHANGES^ CONTINUED

Pag* 10: NEW
Changs: "Used In Direct nod*. "

To: NorMlly used in Dir«ct Mod«> but useful in
dofforod «od* «s an altarnativa to END

Pag* 14: C8HIFT3 CDELETE3
Add: Caution: does not dolota BASIC program linos!

Pago 15: FOR
Add: Noto: sao also SET/SYS (> discussion in

chaptar 12.

Paga 18: IF/THEN
Add: Saa also IF. . . ELSE. . . ENDIF discussion in BASIC

A+ appendix to this chaptar.

Paga 19: Thftd paragraph
Change: "The statesients R-9: GOTO 100 "

To: "The statements R«9: OOTO 200. ..."

Page 22: TRAP
Add: Note: see also CONT (page 9) and ERRO Cin BASIC

A+ appendix to chapter 63.

Page 22: Last Line
Change: 32767 to 32768
Add to sentence: or whose value is zero(O).

Page 23: 4th paragraph
Change: "BASIC reserves lOCB »0. . .

"

To: BASIC A+ uses lOCB »0 for I/O to the screen editor,
and the user mav take advantage of this fact by
using OET *0f A or PRINT tfOi . . . or using ftO with
virtually any I/O statements. The user mag even
CLOSE ttO but should do so with EXTREME caution.

Page 29: DOS
Add: CP Cas a keyword title!
Add Note CP is identical in function to DOS.

Page 29: INPUT
Add: Note: In BASIC A-t-i input variables may be subscriptedi

with results similar to LET.

Page 29: INPUT
Add at bottom of page: If the user's sole response to an INPUT

prompt is CC0NTR0L-C:iCreturn3« a special error
(number 27) will be issued by INPUT. This can be
useful in data entry manipulations.

Page 28: PRINT
Add: Note: See also PRINT USING in BASIC A-i- appendix to

this chapter.

— information page only

—

Pmqm 29: Second paragraph
Dalata: paragraph
Add: String and matrix variables us«d in READ statements

must ba dimensioned and MAY be subscripted.

NOTE: String DATA may be enclosed in quotes* in
which case commas may be contained in the
string data.

Page 29- STATUS
Delete: - .

.

This psrasrsph does not apply to version 3404

now compatible with Atari BASIC

Page 30:
Add:

Page 30:
Change:
To:

Page 30:
Change:
To:

XIO
Note: It is highly recommended that the BASIC user

avoid XIO cffldno's 3.9*7.9.11.17.37 and 38.
BASIC A-*- users should find all these, as well
as cmdno's 32 thru 36. totally unnecessary.

This F'ara^raF'h does not apply to version 3.04

now compatible with Atari BASIC

This paragraph does not apply to version 3*04

pow compatible with Atari BASIC

Page 31: Modifying a BASIC program on disk
Change step 9: "READY"
TO: OSS OS/A* prompt.
Add step 9a: Load BASIC A-*- by typing BASIC Creturn3.

Page 36: U8R
Add: Note: See also SET/SYS(> in chapter 12.

Page 39: Fourth paragraph
Change: "...a substring contains up to 99 characters..."
To: Any string or substring may contain up to 32767

characters (depending upon available memory).

Page 39: Figure 7. 9
Note: In BASIC A-*-, lines 90 and 60 may be replaced by:

90 A»-A». B*. C»

— information page only

—

P«fl« 39: Undar "String Splitting"
Add To: Bvginning of tontonco mhich begins "Tho starting

location cannot. .
.

"

Add: For sourco strings only (i.»> strings used in an
•iprossion). .

.

Not*: Destination strings Cin A»«. . . , READ A»(X). INPUT
AX10<20}3 have no subscript restrictions other
than their diaension.

Page 42: Second paragraph ("Note ...">
Delete: Paragraph and following saaple prograai
Add: Note: BASIC A^ alwags initializes arrays AND string

when they are DINensioned. Array elesients ar
set to all nulls (binary zeros).

Page 42: Figure 8-4
Note: Lines 30 and 40 may be replaced by

30 READ A(E>

Page 63: PROORAHNXNO IN MACHINE LANGUAOE
Add Note to second paragraph: See also SET/SYSO in CH 12.

Page D-2 (appendix D): FREE RAN
Note: BASIC A* gives the user more zero page free RAM than

Atari Basic* but uses more RAM in page 600.
Change: FREE RAH addresses to read:

1791 6FF FREE RAM
1664 680

207 CF FREE BASIC A-i- and EASMD RAM
192 CO

191 BF FREE EASMD RAM
176 BO

information page only

Pag* Z-1 (Appendix X>: 8T0PLN
D«l«t« Line: STOPLN not supportsd
R««son: U%m ERR(l) instead.

Pag* X-i: ERR8AV
Dalata Lina: ERRSAV not supported
Raason: Us* ERR(O) instead.

Pag* Z-1: PTABW
D*l*t* Lin*: PTABW not supportsd
R*ason: Us* SET I, tt instsad.

Pag* 117: Ind*x
Not*: Xnd*x has not v*^ b**n updatad to roflcct

additions of BASIC A-*- f*atur*s. Alto*
pag* nuabar <117) is not corroct.

H*lp: 8*nd in your softwar* ragistration forin

to get on our FREE newsletter mailing
list. We will NOT send newsletter to
anyone not returning this form.

— information page only

—

CHAPTER APPENDICES

Th« following p«gos «ro intondod to bo «ppondicos to tho various
cliaptors of tho Atari Bosic <Mnu«l. As such, thoy have pago
nunbors that should «ako it obvious whoro thoy aro to bo insortod
in tho Manual. For oiaiRplo* 12-A and 12-B aro to bo insortod
aftor pago 12 (chaptor 2) in tho Manual.

Plaaso road thoso pagos thoroughly* as much of tho most important
material of tho BASIC A-*- manual is contained horoin.

— information page only

—

CQNT

(CON. y

ForiMt: CONT
ExMpl*: CONT

100 CONT

In dirvct modct this command resumes a progrM after a STOP
statement or BREAK key abort or an«j stop caused by an error.

Caution: Execution resumes on the line following the halt.
Statements on the same line as and following a STOP or error
will not be executed.

In deferred mode> CONT may be used for error trap handling.

Example: 10 TRAP 100
20 OPEN *1. 12i0. "D: X"
30

100 IF ERR (0) -170 THEN
OPEN ttl.S. 0. "D: X'':CONT

In line 20 we attempt to open a file for updating. If the
file does not exist* a trap to line 100 occurs. If the
"FILE NOT FOUND" error occured> the file is opened for output
(and thus created) and execution continues at line 30 via
"CONT".

9 - A

ForMt: CLET3 «v«r"a«xp
CLET3 svar>s«xpC< ««xp. . . 1

Ex«p«l«: LET X-3. 9
LET LETTER*-"*"
A*-"*". A«i a; a*, a*, a*

NoriMlly an option*! ksyword* LET must b« ut«d to assign a
valua to a variabla nana which starts with (or is idantical
to) a rasarvad naaia.

String concattanation may ba accoiap lishad via tha for shown
in tha last axasipla abova . Nota that a concatenation of tha
for*

is axactly aquivalant to
A«-B«
A«(LEN(A»>4-1)-C»

Examplas: DIM A»(100). BXlOO)
A»-"123-
B»*"ABC"
A«-A». B«. A«

(At this point. A»» "123ABC123ABC"

)

A*(4. 9)-"X".STR»(3»7). "X"

(At this point, A«-" 123X21 X23ABC "

)

A»(7)'-A»(l,3>

(Finally. A»-- 123X21 123"

>

10 - A

ADVANCED PROGRAII DEVEL0PI1ENT COimANDS

TRACE

TRACEQFF

ForflMLts: TRACE
TRACEOFF

ExMplcs: 100 TRACE
TRACEOFF

Thess «t4t«««nts ara used to anablc or ditabla th« line
nu«fa«r tr«c« facility of BASIC A+. Whan in TRACE mode.
th« line nuabcr of « lina About to b« axacutad is displayad
on tho scroon surrounded by square brackets.

Exceptions: The first line of a program does not have its
number traced. The object line of a GOTO or
0O8UB and the looping line of FOR or WHILE
may not be traced.

Note: A direct statement (e.g., RUN) is TRACED as
having line number 32768.

LVAR

Format: LVAR filename
Example: LVAR "E:

"

This statement will list (to any file) all variables currently
in use. The example will list the variables to the screen.
Strings are denoted by a trailing arrays by a trailing
'('.

LOHEM

Format: USHEn addr
Example: LOMEM DPEEK(128) •••1024

This coflHsand is used to reserve space below the user's program
space. The user then might use the space for assembly
language routines. The usefulness of this may be limited,
though, since there are other more usable reserved areas
available.

Caution: L0MQ1 wipes out any user program currently in memory.

12 - A

ForMt: DEL lin«C. lin«3
DEL 1000. 1999

DEL d«l«t«s program lines currently in memory. If two lin*
nu«b«rs aro givon («s in tho oxaaiplo). all linas batwaan th
two nuMbara (inclusiva) ara dalatad. A aingla lina number
dalatas a single lina.

Example:
100 DEL 1000. 1999
110 SET 9.1: TRAP 1000
120 ENTER -D:0VERLAY1"
1000 REM THESE LINES ARE DELETED BY
1010 REN LINE 100
1020 REM
1030 REM PRESUMABLY THEY WILL BE
1040 REM OVERLAID BY THE ENTERED PROGRAM
1990 REM SEE 'ENTER' AND 'SET' FOR
1999 REM MORE INFO

12

ADVANCED PROGRAN CONTROL

BASIC A+ adds Structurad PrograoMing capability with
two naw PrograM Control Structuras.

IF. . . ELSE. . . ENDIF

Forsat: IF aaxp: <statafiants>
CELSE: <stata«ant«> 1

ENDIF
Exa«plas: 200 IF A>iOO: PRINT "TOO BIO

210 A«100
220 ELSE: PRINT "A-OK"
230 ENDIF

lOOO IF A>C : B-A : ELSE : B«C : ENDIF

BASIC A-*- Mkas availablo an cxcaptional ly powarful cond-
itional capability via IF. . . ELSE. . . ENDIF

In tha forMt givon« if tha axprattion tvaluatas non-saro
than all stata«ants bctwaan tha following colon and tha
corratponding ELSE (if it axistt) or ENDIF (if no ELSE
axists) ara axacutadi if ELSE axists< tha stata«antt
batwaan it and ENDIF ara tkippad.

If tha aaxp avaluata* to zaro* than tha ttataaants (if any)
batwaan tha colon and ELSE ara skippad and thota batwaan
ELSE and ENDIF ara axacutcd. If no ELSE txists* all stata-
fliants through tha ENDIF ara tkippad.

Tha colon following tha aaxp IS REQUIRED and MUST ba followad
bu a ttataaant. Tha word THEN is NOT ALLOWED in this foriRat

Tharo SNiy ba any nuMbsr (including zaro) of statamants and
linas batwaan tha colon and tha ELSE and bttwaon tha ELSE
and tha ENDIF.

Tha sacond axampla abova sats B to tha larger of tha valuas
of A and C.

Nota: IF structuras My ba nastad.

Exaapla:
100 if A>B : REM SO FAR A IS BIGOER
110 IF A>C : PRINT "A BIOOEST"
120 ELSE : PRINT «C BIOOEST"
130 ENDIF
140 ELSE
190 IF B>C : PRINT "B BIOOEST"
160 ELSE : PRINT «C BIOOEST"
170 ENDIF
180 ENDIF

22 - A

yHILE

ENDWILE

ForMt: WHILE ««xp : <stat*m*nts> : ENOUHILE
EiMpltt: 100 A*0

110 WHILE A: PRINT A
120 A«A-1 : ENDWHILE

With WHILE. th« BASIC A-»- usar h«« y«t another powerful
control structuro available. So long as tha aaxp of WHILE
roMins non-zoro. all ttatamonts batwaan WHILE and ENDWHILE
ara aiacutad.

Exaaipla: WHILE 1 :

Tha loop axacutas foravar

Exampla: WHILE O :

Tha loop will navar axacuta

Caution: Do not GOTO out of a WHILE loop or a nasting arror
will likaly raiult. (though POP can fix tha stack
in a«argancias.)

Nota: Tha aaxp is only tastad at tha top of aach passage
through the loop.

Note: As with ALL BASIC A-*- control structures. WHILES may
be nested as deep as me«ory space allows.

22 -

ADVANCED INPUT/OUTPUT

INPUT

ForfMt: INPUT string-1 itarjili varC. var. . 3

Ex«iiipl«: INPUT -3 VALUES »"« V(1 >, V(2>. V(3>

BASIC A-^ allows th» us«r to include m prompt with the INPUT
mtatMcnt to product easier to write and read code. The
literal proeipt ALWAYS replaces the default ("?") prompt.
The literal string may be nul for no prompt at all.

Note: No file number may be used when the literal prompt
is present.

Note: In the example above* if the user typed in only
a single value followed by RETURN* he would be
reprompted by BASIC A* with "??". But see chapter
12 for variations available via SET.

DIR

Format: DIR filespec
Example: DIR "D: *. COM"

List the contents of a directory to the screen. Action is
similar to OS/A-*- DIR command* but there are no default file
specifications. The example above would list all COMmand
files on drive 1.

32 - A

PROTECT

UNPROTECT

ForMt: PROTECT fil«sp«c
UNPROTECT filaspcc

ExMplcs: PROTECT "D: ». COM"
100 UNPROTECT -D2: JUNK. BAS

PROTECTing » implies that th« fila cannot b« arascd or
writtan to. UNPROTECT alininatas any axisting protaction.
Siailar to OS/A-*- PROtact and UNProtact* but thara ara no
dafault fila spacif ications. In tha axa«plas« tha first
«fould protact all coflMsand filas on driva 1 and tha sacond
would unprotact only tha fila shown.

ERASE

Format: ERASE filaspac
Exampla: ERASE "D: *. BAK

Erasa will arasa any unprotactad filas which match tha givan
filaspac. Tha axampla would arasa all .BAK (back-up) filas
on driva 1. Similar to OS/A-*- ERAsa. but thara ara no dafault
fila spacifiars.

RENAME

Format: RENAHE <f i laspac. f i lanama>
Examp la: RENAME "02: NEW. DATi OLD. BAK"

Allows ranaming fila(s> from BASIC A-*-. Nota that tha comma
shown MUST ba imbaddad in tha string litaral or variable
usad as tha fila parameter.

Caution: It is strongly suggested that wild cards <* and ?)
NOT ba used when RENAMing.

32 - B

PRINT USING

ForMt: PRINT C«fnj 3U8INO ««xp. txp C. exp. . . 3

Ex««pl«: (s«v b«low>

PRINT USING allows tha u««r to specify a foraat for ths output
to tha dsvica or fila associated with "fn" (or to ths scrssn).
Tlia format string "saxp" contains ono or mora format fialds.
Each format fiald tails how an axprassion from tha expression
list is to be printed. Valid format field characters are:

Non-format characters terminate a format field and are printed
as they appear.

Example 1) 100 PRINT USING "»# ttttX*". 12. 315.

7

2> 100 DIM A»(10) : A»a"*# *#«X*"
200 PRINT USING A». 12. 313. 7

Both 1> and 2) will print

12 319X7

Where a blank separates the first two numbers and an
X separates the last two.

NUMERIC FORMATS:

The format characters for numeric format fields are:

DIGITS (• & •)

Digits are represented by:

• Si *

« - Indicates fill with leading blanks
li - Indicates fill with leading zeroes
• - Indicated fill with leading asterisks

If the number of digits in the expression is less than the
number of digits specified in the format then the digits are
right justified in the field and preceded with the proper
fill character.

NOTE: In all the following examples b is used to represent a
blank.

Example:

Value Format Field Print Out

32 - C

1 •«• bbl
12 •** bl2
123 •«« 123
1234 •#• 234
12 tAii 012
12 **« «12

DECIMAL POINT (.)

A daciiMil point in the fornat fi»ld indicate* that a dacimal
point be printed at that location in tha number. All digit
potitiont that follow the decimal point are filled with digits.
If the expression contains fewer fractional digits than are
indicated in the format* then zeroes are printed in the extra
positions. If the expression contains more fractional digits
than indicated in the format> then the expression is rounded
so that the number of fractional digits is equal to the number
of format positions specified.

A second decimal point is treated as a non-format character.

Examp le:

Value
123. 496
4. 7
12. 35

Format Field
«««. tt«

»#«. ««
««. «».

Print Out
123. 46
bb4. 70
12. 35.

COMMA (, >

A comma in the format field indicates that a comma be printed
at that location in the number. If the format specifies a
comma be printed at a position that is preceeded only by fill
characters (0 b •> then the appropriate fill character will be
printed instead of the comma.

The comma is a valid format character only to the left of the
decimal point. When a coouaa appears to the right of a decimal
point, it becomes a non-format character. It terminates the
format field and is printed like a non-format character.

Example:

Value Format Field Print Out
9216 »«.«*« b5. 216

3 ••.«»• bbbbbS
4179 *** «4. 179

3 Ut. 000003
42.71 •«.•«. 42. 71>

SIGNS (-*- ->

A plus sign in a format field indicates that the sign of the
number is to be printed. A minus sign indicates that a minus
sign is to be printed if the number is negative and a blank

32 - D

if th« nuiib«r it positiv*.

Signs mmif bm sithcr fixad* floating or trailing.

A fix«d sign «ust appear as the first character of a format
f iald.

Eiaapla:
Value Format Field Print Out
43. 7 +##. « +b43. 7

-43. 7 +. * -b43. 7
23. 98 -dSiti. b023. 98

-23. 98 -lAli. tt& -023. 98

Floating signs must start in the first format position and
occupy all positions up to the decimal point. This causes
the sign to be printed immediately before the first digit
rather than in a fixed location. Each sign after the first
also represents one digit.

Example:
Value Format Field Print Out
3. 79 •« bb+3. 79
3. 79 . •« bbb3. 79

-3. 79 . •# bb-3. 79

A trailing sign can appear only after a decimal point. It
terminates the forsMt and prints the appropriate sign (or
blank).

Example:
Value Format Field Print Out
43. 17 *. *+ #43. 17+
43. 17 &8c&. «tk- 043. 17b

-43. 17 »««. ##+ b43. 17-

DOLLAR SIGN (»)

A dollar sign can be either fixed or floating, and indicates
that a * is to be printed.

A fixed dollar sign must be either the first or second character
in the format field. If it is the second character then or -
must be the first.

Examp le:

Value Format Field Print Out
34. 2 »««. •« 934. 20
34. 2 «• -••«34. 20

-34. 2 +»«#. •« -» 34. 20

Floating dollar signs must start as either the first or second
character in the format field and continue to the decimal point.
If the floating dollar signs start as the second character then
•(or - must be the first. Each dollar sign after the first also
represents one digit.

32 - E

V«lu« Foriut Fivld Print Out
34. 2 #« bb«34. 20
34. 2 •»-•»•••. »• •»-bb«34. 20

1972963.41 Mr 91. 972i 963. 41->-

NOTE: Thar* can only bm on« floating char«ctor per format
f iold.

NOTE: +1 -> or • in othor than proper positions will give
strange results.

STRING FORHATS:

The format characters for string format fields are:

X - Indicates the string is to be right justified.
! - indicates the string is to be left justified.

If there are more characters in the string than in the format
field< than the string is truncated.

Examp le:

Value Format Field Print Out
ABC XXTAX bABC
ABC ! ! ! ! ABCb
ABC X% AB
ABC ! ! AB

«

ESCAPE CHARACTER (/)

The escape character (/) does not terminate the format field
but will cause the next character to be printed* thus allowing
the user to insert a character in the middle of the printing
of a number.

Example: PRINT USING "•«*/-**«•". 2991472 prints

299-1472

Example: 100 AREA - 408
200 NUn - 2991472
300 PHONE - (AREA»lE+7)-»-NUM
400 DIM F«(20>
900 F% - "(•««/}«•«/-»«««"
600 PRINT USING F*. PHONE
700 END

This program will print

(406)299-1472

NOTE: Improperly specified format fields can give some very
strange results.

NOTE: The function of " and "> " in PRINT are overridden in

32 - F

th* •iprvssion list of PRINT USING, but when fils
nu«b«r "fn" is given than th« following " or "j " hav
th« s«M« Meaning as in PRINT. So to avoid an initial
tabbing* use a semicolon (; >.

Exaaipla: PRINT ftSi USING A*. B

*
Will print B in the format specified by A»
to the file or device associated with file
number S.

Example: PRINT USING "«« /« *>«#«", 12, 9. 3«12

12 * 5b60

Example: PRINT USING "TOTAL«##. #+", 72. 68

TOTAL-72. 1-*-

Example: 100 DIM A«(10) : A«s"TOTAL«"
200 DIM F«<10) : F»«" !!!!!!««. »•«"

300 PRINT USING F». A». 72. 68

TaTAL»72. 7-I-

NOTE: IF there are more expressions in the expression list
than there are format fields, the format fields will
be reused.

Example: PRINT USING "XX#«", 25, 19, 7 will print

XX29XX19XXb7

WARNING:

A format string must contain at least one format field. If
the format string contains only non-format characters, those
characters will be printed repeatedly in the search for a
format field.

Format: TAB Cttfn, 1 aexp
Example: TAB »PRINTER. 20

TAB outputs spaces to the device or file specified by fn (or
the screen) up to column number "aexp". The first column is
column O.

NOTE: The column count is kept for each device and is reset
to zero each time a carriage return is output to that
device. The count is kept in AUX2 of the lOCB. (See
OS documemtation).

NOTE: If "aexp" is less than the current column count, a
carriage return is output and then spaces are put out
up to column "aexp".

32 - G

BPUT

BGET

ForMt: BPUT tffn* acxpl* ««xp2
ExMpl*: («•• below)

BPUT outputs « block of d«t« to the dovic* or file ipccificd by
"fn". Th« block of data starts at addrsss "aaxpl" for a length
of *'a«xp2".

NOTE: The addrass nay ba a namory addrass. For axampla* the
whole screen might be saved. Or the address may be the
address of a string obtained using the ADR function.

Example: BPUT ttS. AOR(A»}« LEN(A«)

This statements writes the block of data
contained in the string A* to the file or
device associated with file number 5.

Format: BOET ttfn. aexpl. aexp2
Example: (see below)

BGET gets "aexp2" bytes from the device or file specified by
"fn" and stores them at address "aexpl".

NOTE: The address may be a memory address. For example* a
screen full of data could be displayed in this manner.
Or the address may be the address of a string. In this
case BOET does not change the length of the string.
This is the user's responsibility.

Example: 10 DIM A«(1025)
20 BGET «9« AOR(A»), 1024
30 AX1025) • CHR*(0)

This program segment will get 1024 bytes from
the file or device associated with file number
3 and store it in A». Statement 30 sets the
length of A» to 1029.

NOTE: No error checking is done on the address or length so
care must be taken when using this statement.

RPUT

Format: RPUT #fn< exp C«exp...]
Example: (see below)

RPUT allows the user to output fixed length records to the
device or file associated with "fn". Each "exp" creates an
element in the record.

32 - H

NOTE: A nuMcric clvflivnt consists of on« byte which indicates
« nuMric tvp* sIsMnt «nd 6 bgtss of numeric data in
floating point forsMit.

A string alaMant consists of one byts which indicates
a string typo alasiant 2 bytas of string langth/ 2 bytas
of DXMansionad langthi and than X bytas whara X is tha
DIMansionad langth of tha string.

Exaapla: 100 DIM A«(6>
200 A» « »XY"
300 RPUT «3. B, A*. 10

Puts 3 ala«ants to tha davica or file
asscoiatad with file nueiber 3. The first
elaaant is nuaaric <the value of B>. The
second eleaient is a string (A$) and the third
is a numeric (10). The record will be 26
bytes long< (7 bytes for each numeric* 9
bytes for the string header and 6 bytes
(the DIM length) of string data).

RGET

Format: RGET #fn, -Csvar} Ci -Csvar}. . . 3

Cavar> Ci <avar>. . . 1

Example: (see below)

ROET allows the user to retreive fixed length records from the
device or file associated with file number "fn" and assign the
values to string or numeric variables.

NOTE: The type of the element in the file must match the type
of the variable (ie. they must both be strings or both
be numeric).

Example: 1) RPUT ttS. A
2) ROET ttLA*

If 1) is a statement in a program used to
generate a file and 2) is a statement in another
program used to read the same file< an error
will result.

NOTE: When the type of element is string, then the DIMensioned
length of the element in the file must be equal to
tha DIMansioned length of the string variable.

Example: 1) 100 DIM A«(100)

800 RPUT #3. A*

32-1

2) 100 Din X»(200)

800 RGET «2, X»

If 1) is « section of m prograai us«d to writs a
fils and 2) is 9 section of anothsr program ussd
to read ths saoia fils« than an error will occur
as a rasult of ths diffsrsncs in DIM values.

NOTE: ROET sets the correct length for a string variable (the
length of a string variable becomes the actual length
of the string that was RPUT - not necessarily the DIM
length).

Example: 1)100 DIM A*(10)
200 A» - "ABODE"

800 RPUT #4. A»

2)100 DIM XS(IO)
200 X» » "HI"

800 RGET Ut, X»
900 PRINT LEN(X«).X»

If 1) is a section of a program used to create
a file and 2) is a section of another program
used to read the file then it will print:

5 ABODE

32 - J

ADVANCED FUNCTIONS

DPEEK

DPOKE

ForMt: DPEEK(addr>
DPOKE «ddr«aexp

Exanplvs: PRINT -variable name tabl* i« afi DPEEK (130)
DPOKE 741. DPEEK(741>>1024

Tha DPEEK function and DPOKE statamant parallel PEEK and
POKE. The diffaranca is that* inataad of working with
sing la byta mostory locations* DPEEK and DPOKE accass or
changa Doubla bgta locations (or "words"). Hanca* DPEEK
MV raturn a valua from O to 69939; and DPOKE 's aexp may
ba any axprasaion evaluating to a lika range.

The primary advantage of DPEEK over PEEK is illustrated
by the following two exactly equivalent program fragments:

100 A-PEEK (130) ••296*PEEK (131

)

100 A-DPEEK<130)

In the second example at the head of this sectioni the top
of memory is lowered by Ik bytes in a single* easy-to-read
statement.

ERR

Format: ERRCaexp)
Example: PRINT "ERROR"* ERR (0) ; "OCCURRED AT LINE"iERR(l)

This function— in conjunction with TRAP* CONT. and GOTO
allows the BASIC A-*- programmer to effectively diagnose and
dispatch virtually any run-time error.

ERR<0) returns the last run-time error number
ERR(l) returns the line number where the error occurred

Example:
100 TRAP 200
110 INPUT -A NUMBER, PLEASE »"*NUM
120 PRINT "A VALID NUMBER" : END
200 IF ERR(0>->8 THEN GOTO ERR(l)
210 PRINT -UNEXPECTED ERROR •"iERR(O)

36 - A

Format:
ExMpIc:

TAB(«cxp

)

PRINT it3i "colunns: "i TAB(20); 20; TABOO); 30

The TAB function'* affvct it identical with th«t of tho
TAB statoMnt (p«go 32-A-»->. Tho difforonco it that< for
PRINT tt«to«ontt* «n itibtddod TAB function tiaplifiot
tho progr«flMi«rt t«tk groatly (too tho oxamplo).

TAB will output ATASCII tpoco ch«r«ctart to the current
PRINT filo or dovico (OS in our oxatiple}. Sufficient
tpacot will bo output to that tho next itom will print
in tho coluflin tpocifiod (only if TAB it followed by o
teMi-colon» though). If the coluein tpecified it lett than
the current coluiiin« a RETURN will be output firtt.

Caution: The TAB function will output tpacet on to«e device
whenever it it utedi therefore, it thould be uted
ONLY in PRINT ttatenentt. It will NOT function
properly in PRINT USING.

36 - B

ADVANCED STRINGS

SUBSTRINGS:

A destination string is on* that is being assigned to.
Any othor string is a sourcs string. In

READ X»
INPUT X»
X»>>Y»

X* is the destination string< Y» is the source string.

Substrings are defined as follows:

STRING definition when

destination string

definition mhen

source string

s»

S»(n)

S«(n<ai)

the entire string
1 thru DIM value

fro* nth thru
DXnth character

from the nth thru
the flith character

from 1st thru LEN
character

from nth thru
LENgth character

from the nth thru
the fflth character

It is an error if either the first or last specified
character (n and mi above) is outside the DIMensioned size.
It is an error if the last character position given
<explicitlg or implicitly) is less than the first character
position.

Example: Assume: DIM A«<10)
A» - "VWXYZ"

1) PRINT At(2) prints:
WXYZ

2) PRINT A»(3. 4) prints:
XY

3) PRINT A»<5. 5) prints:
Z

4) PRINT A»(7)
is an error because A* has a length of 9.

NOTE: Refer to the LET statement* page 10-ai for examples of
BASIC A^ string concatenation.

40 - A

FIND

Farsat: FZND(s«xpl> scxp2i acxp >

ExMpls: PRINT FIND ("ABCDXXXXABC", "BC, N)

FIND i« mn •ffici»nt< tpcvdy w«y of determining whether
any given substring is contained in any given master string.

FIND will search sexpl/ starting at position aexp< for sexp2.
If sexp2 is found* the function returns the position where it
was found* relative to the beginning of sexpl. If sexp2 is
not found* a O is returned.

In the example above* the following values would be PRINTed:

2 if N«0 or N-1
9 if N>2 and N<10
O if N>-10

More Examples:
10 DIM A»<1)
20 PRINT "INPUT A SINCLE LETTER:
30 PRINT "Change/Erase/List"
40 INPUT -CHOICE ?",A»
90 ON FINDCCEL"* AS*0> GOTO 100*200.300

An easy way to have a vector from a menu choice

100 DIM A»(10): A»-*'ABCDEFOHIJ"
110 PRINT FIND (A», "E"*3)
120 PRINT FIND (A»(3)*"E")

Line 110 will print "5" while 120 will print "3". Remember*
the position returned is relative to the start of the
specified string.

100 INPUT "20 CHARACTERS* PLEASE: "*A«
110 ST-0
120 F-FIND(A», "A". ST): IF F»0 THEN STOP
130 IF A*<F+1. F+1)«"B" OR A»(F+1* F+1)-»C"

THEN ST«F+l:OaTO 120
140 PRINT "FOUND 'AB' OR 'AC'"

This illustrates the importance of the aexp's use as a
starting position.

40 - B

ADVANCED QAHE CONTROL

Nota: 3mm also ch«pt«r 13. PLAYER/MISSILE GRAPHICS.

HSTICK

VSTICK

ForMts: HSTICK(a«xp)
V8TICK(aaxp)

EXAMPLES: IF HSTICK (0)>0 «nd VSTICK (0X0
THEN PRINT "DOWN» TO THE RIOHT"

If th« nuabvring «ch«ii* for STICK(O) positions disMifod
youi tako hoart: HSTICK and VSTICK provido a simpler
Mthod of reading tha joijsticks.

VSTICK(n> roads joystick n and roturns:
-*>1 if tho joystick is pushed up
—i if the joystick is pushed down

if the joystick is vertically centered

HSTICK(n>. reads joystick n and returns:
*l if the joystick is pushed right
-1 if the joystick is pushed left
O if the joystick is horizontally centered

PEN

FortMt: PEN(aexp>
Exaaple: PRINT "light pen at X-"ipen(0)

The FEU function si«ply reads the ATARI light pen registers
and returns their contents to the user.

PEN(O) reads the horizontal position register
PEN(1> reads the vertical position register

60 - A

NUNBERS

All nuabcrs in Basic «r« in BCD floating point.

Floating point numbers must bs Isss than lOE-i-98 and
greater than or equal to -lOE-98.

INTERNAL FORMAT:

Nuabers are represented internally in 6 bytes. There is a S
byte Mantissa containing 10 BCD digits and a one byte exponent.

The most significant bit of the exponent byte gives the sign
of the Mantissa (0 for ppstive« 1 for negative). The least
significant 7 bits of the exponent byte gives the exponent in
excess 64 notation. Internally* the exponent represents powers
of iOO (not powers of 10).

Example: O. 02 « 2 * 10*^2 « 2 IOO'*-!

exponent" -I + 40 « 3F

O. 02 - 3F 02 00 00 00 00

The implied decimal point is always to the right of the first
byte. An exponent less than hex 40 indicates a number less
than 1. An exponent greater than or equal to hex 40 represents
a number greater than or equal to 1.

Zero is represented by a zero mantissa and a zero exponent.

In general* numbers have a 9 digit precision. For example*
only the first 9 digits are significant when INPUTing a
number. Internally the user can usually get 10 significant
digits in the special case where there are an even number
of digits to the right of the decimal point (0.2*4...).

68 -

ADDITIONAL CHAPTERS

Th« p«g«ft th«t follow constitute two now chapters to bo added
to the At«ri Basic Mnual in the process of turning it into
« BASIC A-*- Mnual.

Chapter 12 describes soae of the system features that give the
BASIC A-»- prograflMser even «ore control over the functions and
presumptions of the language. Using some of the features described
in chapter 12 can get you in real trouble. ..or can give nou power
never before possible in virtually any Basic.

Chapter 13 is almost a annual in and to itself: it explores the
world of Player/Missile Graphicsi formerly accessible only through
poorly documented PEEKs and POKEs and/or slow Basic programs.
The speed and scope of Player/dissile Graphics is probably one of
the Atari's most advanced features. . . and now YOU> the BASIC A-t-

user* can have almost total control.

-information page only

12

ADVANCED SYSTEM FEATURES

SET and SYS

ForMts:

Examples:

SET a«xpl< a*xp2
SYS(«exp)
SET 1. 5
PRINT SYS (2)

SET i« a itatcMnt which allows the user to •xeric«s
control over a varity of BASIC A-t- syston Icvol functions.
SYS is siaplv an arithmatic function usad to check tha
SETtings of thasa functions. The table balow sumiarizes
the various SET table parameters. (Default values are
given in parentheses.

)

aexpl aexp2
PARAHETER • LEGAL VALUES

0. (0>
1

128

1< (10) 1 thru 127

meaning

-BREAK key functions normally
-User hitting BREAK cause an
error to occur (TRAPable)

-BREAKS are ignored

-Tab "stop" setting fort the
comma in PRINT statements.

2. (63) O thru 235 -Prompt character for INPUT
(default is "?").

3' (0) -FOR. .. NEXT loops always execute
at least once (ala ATARI BASIC).

1 -FOR loops may execute zero times
(ANSI standard)

(1)

-On a mutiple variable INPUT*
if the user enters too few
itemst he is reprompted (e. g.

with "??")
-Instead of reprompting< a
TRAPable error occurs.

(1)

-Lower case and inverse video
characters resMiin unchanged
and can cause syntax errors.

-For program entry OM_Y. lower
case letters are converted to
upper case and inverse video
characters are uninverted.
Exception: characters between
quotes remain unchanged.

69

(0) o

1

(0>

-Print error Mssagct along with
•rror nu«b«rs (for «ost errors)

-Print only orror nu«bors.

-Missiles (in Pl«yor/Missile-
Or«phics}< which aovo vertically
to the edge of the screeni
roll off the edge end ere lost.

-Missiles wraparound from top to
bottom and vise versa.

8.

(1>

-Don't push (PHA) the number of
parameters to a USR call on the
stack Cadvantage: some assembly
language subroutines not expect-
ing parameters may be called by
a simple USR(addr) 3.

-DO push the count of parameters
(ATARI BASIC standard).

9, (O) O -ENTER statements return to the
READY prompt level on completion

1 -If a TRAP is properly set, ENTER
will eiecute a GOTO the TRAP line
on end-of-entered-f ile.

Note: The SET parameters are reset to the system defaults
on execution of a NEW statement.

Note: System defaults may be changed either temporarily or
permanently (by SAVEing a patched BASIC A* via 08/A-»-)
by POKEing the locations noted in the memory map.

Examples:
1) SET 1»4 : PRINT 1.2,3.4

THe number will be printed every four columns

2> SET 2,ASC(->'')

Changes the INPUT prompt from to ">"

3) 100 SET 9. 1 : TRAP 120
110 ENTER "D: OVERLAY. LIS"
120 REM execution continues here after entry of
130 rem the overlay

4> lOO SET 0. 1 : TRAP 200
110 PRINT "HIT BREAK TO CONTINUE"
120 GOTO 110
200 REM come here via BREAK KEY

9) 100 SET 3. 1

110 FOR I « 1 TO
120 PRINT " THIS LINE WON'T BE EXECUTED"
130 NEXT I

70

ForMt: MOVE froni-«ddr< to-addri Imn
CnOVE ««xp< a«sp, a«xp3
MOVE 13*4096, 8*4096. 1024ExMpl*:

Caution: Be careful with thi« cooMiand.

MOVE is a ganaral purpose byt* move utility which will move
any number of bytes from any address to any address at
assembly language speed. NO ADDRESS CHECKS ARE MADE!!

The sign of the third aexp (the length) determines the
order in which the bytes are moved.

If the length is postive:
(from> -> (to)
(from+1) -> (to+l)

The example above will move the character set map to BASIC
A+'s reserved area in a 48K RAM system (it moves from »D000
to 9BQOO).

(from+len-1) -> (to +len-l)

If the length is negative:
(fro«H-len-l) -> (to-*-len-l)
(fro«H-len-2) -> (to-«-len-2)

(from+1) -> (to +1)
(from) -> (to)

71

13

PLAYER / MISSILE GRAPHICS

This section describes the BASIC A-*- coamands and
functions used to access the Atari's Player-Missile Graphics.
Player Missile Graphics (hereafter usually referred to as
siaply "PMC") represent a portion of the Atari hardu»are
totally ignored by Atari Basic and Atari OS. Even the screen
handler (the "8:" device) knows nothing about PMG. BASIC A-»-

goes a long way toieard reeiedying these omissions by adding
six (6) PMO comnands (statements) and two (2) PMG functions
to the already comprehensive Atari graphics. In additioni
four other statements and two functions have significant uses
in PMG and will be discussed in this section.

The PMG statements and functions:

PMGRAPHICS PMCQLOR PMCLR
PMMOVE PMWIDTH MISSILE

BUMP(. . .) PMADR(. . .)

The related function and statements:

MOVE BGET BPUT
POKE USR(. . . > PEEKC. . .)

AN OVERVIEW

For a complete technical discussion of PMO< and to learn
of even more PMG "tricks" than are included in BASIC A-*-i read
the Atari document entitled "Atari 4<X>/800 Hardware Manual"
(Atari part number C016999i Rev. 1 or later).

It was stated above that the "S: " device driver knows
nothing of PMG* and in a sense this is proper: the hardware
mechanisms that implement PMG are* for virtually all purposes*
completely separate and distinct from the "playfield" graphics
supported by "S: ". For examplei the size* position* and color
of players on the video screen are completely independent of
the GRAPHICS mode currently selected and any COLOR or SETCOLOR
commands currently active. In Atari (and now BASIC A-**)

parlance* a "player" is simply a contiguous group of memory
cells displayed as a vertical stripe on the screen. Sounds
dull? Consider: each player (there are four) may be "painted"
in any of the 128 colors available on the Atari (see Setcolor
for specific colors). Within the vertical stripe* each bit
set to 1 paints the player's color in the corresponding pixel*
while each bit set to O paints no color at all! That is* any

bit in a player stripe has no effect on the underlying
playfield display.

72

Why « v«rtic«l strip*? R*fcr to Figur* PHG-1 for a rough
idmm of tho plagor concept. If «i>« dafino a shapo within the
bounds of this strips (by changing soms of ths player's bits
to I's)* we My then move the stripe anywhere horizontally by
a sitsple register POKE (or via the PMflOVE cooHiiand in BASIC A-*-).

We isay move the player vertically by simply doing a circular
shift on the contiguous memory block representing the player
(again* the PHMOVE command of BASIC A-<- simplifies this process).
To simplify:

A player is actually seen as a stripe on the screen 8
piiels wide by 128 (or 296. see below) pixels high. Within
this stripe, the user may POKE or MOVE bytes to establish what
is essentially a tall, skinny picture (though much of the
picture may consist of bits, in which case the background
"shows through"). Using PMMOVE. the programmer may then move
this player to any horizontal or vertical location on the
screen. To complicate:

For each of the four players there is a corresponding
"missile" available. Missiles are exactly like players
except that (1) they are only 2 bits wide, and all four
missiles share a single block of memory. (2) each 2 bit
sub-stripe has an independent horizontal position, and (3)
a missile always has the same color as its parent player.
Again, by using the BASIC A-*- commands (MISSILE and PMMOVE.
for example), the programmer/user need not be too aware of
the mechanisms of PMG.

CONVENTIONS

1. Players are numbered from O through 3. Each player has
a corresponding missile whose number is 4 greater then
that of its parent player, thus missiles are numbered
4 through 7. In the BUMP function, the "playfields" are
numbered from 8 through 11. corresponding to actual
playfields through 3. (Note: playfields are actually
COLORS on the main (^Raphics screen, and can be PLOTted.
PRINTed. etc).

2. There is some inconsistency in which way is "UP". PLOT.
ORAWTO. POKE. MOVE, etc are aware that 0.0 is the top
left of the screen and that vertical position numbering
increases as you go down the screen. PMMOVE and VSTICK.
however, do only relative screen positioning, and define
"•»>" to be UP and "-" to be DOWN. Clf this really bothers
you please let us know!].

3. "pmnum" is an abbreviation for Player-Missile NUHber and
must be a number from to 3 (for players) or 4 to 7 (for
missiles).

73

FIGURE PHC-l

Or«phic R«pr«««nt«tion of Pl«ycr/nissi !• Displays vs. Playfisld

A-TV SCREEN

r

Mi

Si

c

L_.

HMicoMrM.

»Z7LJ099

•P1ay^'>W Are* —

FIGURE PHG-2

MMory Us«g« in Pl«y«r/t1issil« Graphics

NOTE: assuMS 48K syst«a. Adjust «ddr«ssts downdMrd
8K or 16K for 40k or 32K systtms.

Rosolution:

Top of RAM

Flavor 3

Playor 2

PlaV'i* 1

Playor

Missiles (all)

singlo lino

•COOO

BFFF
•BFOO

double line

•GOOO

BFFF
»BF80

»BEFF BF7F
»BEOO »BFOO

«BOFF •BEFF
•BOOO •BE80

»BCFF BE7F
•BCOO •BEOO

«BBFF BDFF
»BBOO •BDSO

THE PHG STATEfCNTS

PHQRAPHICS

(PHC.)

ForMt:
EiMpla:

PMCRAPHICS acxp
PMQ. 2

This statsMnt is used to •n«blc or disable the Player-
Hissila Graphics system. The aaxp should svaluat* to 0,
i< or 2:

PHO. Turn off PMC
PMO. 1 Enabla PMG. single line resolution
PMO. 2 Enable PHO> double line resolution

Single and Double line resolution (hereafter refered to
as "PMG nodes") refer to the height which a byte in the
player "stripe" occupies - either one or tuo television
scan lines. (A scan line height is the pixel height in
CRaphics mode 8. ORaphics 7 has pixels 2 scan lines highi
similar to PHG. 2)

The secondary implication of single line versus double
line resolution is that single line resolution
requires twice as much memory as double line< 256 bytes
per player versus 128 bytes. Figure PnO-2 shows PMG
memory usage in BASIC A-»-. but the user really need not be
aware of the mechanics if the PMADR function is used.

This statement "clears" a player or missile area to all
zero bytes, thus "erasing" the player/missile. PliCLR
is aware of what PMG mode is active and clears only the
appropriate amounts of memory. CAUTION: PMCLR 4 through
PMCLR 7 all produce the same action — ALL missiles are
cleared* not just the one specified. To clear a single
missile* try the following:

PHCLR

Format:
Example:

PMCLR pmnum
PMCLR 4

SET 7,0 PMMOVE 4i299

75

PnCOLOR

(PHCO.

)

ForMt: PnCOLOR pfflnumi a«xpj a«xp
Ez««plc: PMCOLOR 2. 13. 8

PMCOLORt ar« identical in usaga to thos» of the SETCOLOR
stat*«*nt cKcspt that m player/missile svt has its color
chosan. Not* thara is no corraspondanca in PMO to the
COLOR stataMnt of playfisld ORaphics: none is necessary
since each player has its own color.

The eiaeiple above would set player 2 and missile 6 to a
siadiuM (lufliinace 8) green (hue 13).

NOTE: PHO has NO default colors set on pouer-up or
SYSTEM RESET.

pnyjDTH

(PNU.

}

Format: PfMIDTH pmnum>aexp
Exatsple: PNUXDTH 1.2

Just as PMGRAPHICs can select single or double pixel heights.
PNWIDTH allows the user to specify the screen width of
players and aissiles. But where PMORAPHICs selects resolution
•ode for all players and missiles. PMUIDTH allows each
player AND missile to be separately specified. The aexp used
for the width should have values of 1.2. or 4 — representing
the number of color clocks (e<iuivalent to a pixel width in
ORaphics mode 7) which each bit in a player definition will
occupy.

NOTE: PMG. 2 and PHWIOTH 1 combine to allow each bit of a
player definition to be et^uivalent to a GRaphics
mode 7 pixel — a not altogether accidental occur-
ence.

NOTE: Although players may be made wider with PMWIDTH. the
resolution then suffers. Wider "players" made be
flMde by placing two or more separate players side-
by-side.

76

pmvE

ForMt: PMMOVE pfflnuaCi avxpDCi ««xp]
ExMpl*: PrtlOVE 0. 120i 1

PMnOVE 1.80
PMnOVE 4i-3

One* m playar or missil* has been "defined" (vi« POKE. MOVE.
GET. or MISSZLE)i the truly unique features of PMG under
BASIC A-»- nay be utilized. With PMIIOVE. the user mag position
the plager/fliissile shape anywhere on the screen almost in-
stantly.

BASIC A+ allows the user to position each player and missile
independently. Because of the hardware implementation!
though* there is a difference in how horizonal and vertical
positioning are specified.

The parameter following the comma in PfltlOVE is taken to be
the ABSOLUTE position of the left edge of the "stripe" to be
displayed. This position ranges from to 299* though the
lowest and highest positions in this range are beyond the
edges of the display screen. Note the specification of
the LEFT edge: changing a player's width (see PMWIDTH) will
not change the position of its left edge* but will expand
the player to the right.

The parameter following the semicolon in PliMOVE is a RELATIVE
vertical movement specifier. Recall that a "stripe" of
player is 128 or 256 bytes of memory. Vertical movement must
be accomplished by actual movement of the bytes within the
stripe - either towards higher memory (down the screen) or
lower memory (up the screen). BASIC A-i- allows the user to
specify a vertical movement of from -239 (down 259 pixels) to
••235 (up 299 pixels).

NOTE: The +/- convention on vertical movement conforms to
the value returned by VSTICK.

Example: PUMOVE NiVSTICK(N)

Will move player N up or down (or not move him) in
accordance with the joystick position.

NOTE: SET may be used to tell PMHOVE whether an object
should "wraparound" (from bottom of screen to top
of screen or vice versa) or should disappear as it
scrolls too far up or down. SET 7, 1 specifies wrap-
around. SET 7*0 disables wraparound.

77

mssiLE

(HIS.

)

ForMt:
ExMpla: MISSILE 4.48,3

MISSILE pfflnuoif acxpi avxp

Th« MISSILE «t«t«fli«nt «llo(iis an easy way for a parent playar
to "ihoot" a misfilt. Tho first aexp tpocifias the absolute
vertical position of the beginning of the missile (0 is the
top of screen), and the second aexp specifies the vertical
height of the aissile.

Would place a missile 3 or 6 scan lines high (depends
on PMG. mode) at pixel 64 from the top.

NOTE: MISSILE does NOT simplt| turn on the bits corres-
ponding to the position specified. Instead, the bits
specified are exclusive-or 'ed with the current missile
memory. This can allow the user to erase existing
missiles while creating others.

The first statement creates a 4 pixel missile at
vertical position 20. The second statement erases the
first missil» and creates a 4 pixel missile at
vertical position 24.

Example: MISSILE 4,64.3

Example: MISSILE 9.40.4
MISSILE 9.40.8

78

PHC FUNCTIONS

PNADR

For«Mit: PMAI>R(a»xp)
ExMpl«: PO>PnAOR(0)

Tlii» function nay b« used In any «rithm«ttc •xprcssion and

is used to obtain tho momory address of any playor or missile.

It is useful when the programaer wishes to MOVE* POKE « BGETi etc.

data to (or froei> a player area. See next section on "PMO

RELATED STATEMENTS" for exaaples and hints.

NOTE: PMADR(«> — where n is a missile number (4 through 7>

returns the same address for all missiles.

BUNP

Format: BUMP (pfflnum« aexp

)

Examples: IF BUMP(4. 1) THEN ...

B'BUnP(0. 8>

BUMP is a function which can be used in any arithmetic ex-

pression. BUMP accesses the collision registers of the ATARI

and returns a 1 (collision occured) or (no collision
occured) as appropriate for the pair of objects specified.

Note that the second parameter (the aexp) may be either a

player number or playfield number (8 through 11).

Valid BUMPS : PLAYER to PLAYER (0-3 to 0-3)
MISSILE to PLAYER (4-7 to 0-3)
PLAYER to PLAYFIELD (0-3 to 8-11)
MISSILE to PLAYFIELD (4-7 to 8-11)

NOTE: BUMP (pip), where the p 's are through 3 and
identical, always returns 0.

NOTE: It is advisable to reset the collision registers
if a relatively long time has occurred since they
were last checked.

YOU MUST CLEAR THE COLLISION REGISTERS VIA
POKE 53278 fO

79

PHG RELATED STATEflENTS

NOTE: 3mm «lso d«criptions of th«s« st«t»mcnts in prvccding
sffctions. Tti* discussions hsrs psrtain only to thsir
us«g« with PMG.

POKE and PEEK

Ons of th« Most cosMRon ways to put player data into a playar
stripe say wall ba to usa POKE. In conjunction with PMAOR.
it is easy to writs understandable player loading routines.

Exaaple: 100 FOR L0C«48 TO 92
110 READ N: POKE LOC-i-PMAOR () . N
120 NEXT LOG

900 DATA 299. 129. 299. 129. 299

PEEK might be used to find out what data is in a part-
icular player location.

HOVE

MOVE is an efficient way to load a large player and/or move
a player vertically by a large amount. With its ability to
MOVE data in upwards or downwards movement, interesting
overlap possibilities occur. Also, it would be easy to have
several player shapes contained in stripes and then MOVEd
into place at will.

Examples: MOVE ADR(A»} . PMADR(2) . 128

could move an entire double line resolution player from A*
to player stripe number 2.

POKE PMADR (1) . 299
MOVE PMADR<l).PMADR(l)+l, 127

would fill player I's stripe with all "on" bits, creating a
solid stripe on the screen.

80

BGET and BPUT

As with nOVE« BOET ««y bm us«d to fill a playvr ncaiorg
<iuickly Mith « pl«y»r ihapt. Th« diffcrvnca im th«t BGET
Mv obtain m playor directly fro* tho disk!

Ex««plo: ' BOET •3.PnA0R(0). 126

Would got « PMG. 2 nodo playor from the filo oponod in
slot 93.

Ex««plc: BOET »4. PnADR(4}. 296*9

Would fill all tho missilos AND playors in PMG. 1 mode —
with a single statement

!

BPUT would probably be most commonly used during program
development to SAVE a player shape (or shapes) to a file
for later retrieval by BGET.

USR

Because of USR's ability to pass parameters to an assembly
language routine> complex PMG functions (written in assembly
language) can be easly interfaced to BASIC A-t-.

Example: A«U8R(PMBLINK. PMADR(2). 128)

Might call an assembly language program (at address PMBLINK)
to BLINK player 2« whose size is 128 bytes.

81

EXAHPLE PHG PROGRAHS

A very siapl* program with on« pl«ycr and its missile

lOO W«1»WAWI d W# W
iio
ISO ram
130 •*wfc«a» w i riwball ~ WAA
139 « • fwwkwn Wff Aw# w rVRI

fl^t rlfw/f% Vw / ram
ISO #01* i ain't* 11 n*^4t^A ram
l&O Y»AJiH wm 1 VtA JBram
170 |f w » W * # A r will

ISO*WW
200 #ciT* vail 130 "1
21 pnnavE o,

«

: ram
220 sound 0> x+x> Of 19 : ram
230 naxt X

240 MISSILE 0, y. 1 - ram
290 MISSILE 0. vi-2. 1 ram
260 MISSILE 0. ii+A, 1 ' ram
300 for x-127 to 299 ram
310 PMMOVE 4. X ram
320 sound 0> 299-x< 10< 19
330 IF (X i 7> - 7 ram
340 MISSILE 0. y.9 ram
390 ENOIF ram
360 next X

370 PMMOVE 0.0 ram
400 width>width*2 ram
410 if width > 4 thon width >

420 PMUIDTH 0. width ram
430 PMCLR 4 ram
440 goto 200 ram
500 rom THE DATA FOR PLAYER S

510 data 193 ram
920 data 189 ram
930 data 299 ram
940 data 189 ram
990 data 193 ram

nota wa laava oursalvas in OR.
doubla lina resolution
just initializing
claar playar and missila
a nica graan playar
gats address of player
a 9 element player to be defined
see below for DATA scheme
actually setting up player shape

player movement loop
moves player horizontally
just to make soma noise

a one-high missile at top of player
anothert in middle of player
and again at top of player
the missile movement loop
moves missile

every eighth horizontal position
you have to see this to believe it
could have had an ELSE< of course

so width doesn't change on screen
we will make the player wider

' 1 : rem until it gets too wide
the new width
no more missile
and do all this again

99
«BD
»FF
«BD
99

* *» »
« *««« *
****««*«
* »«*« *
* *» •»

CAUTION do NOT put
(DATA must

the REMarks on lines 910 thru 990
be last statement on a line !)

I I I I I I I

Notice how the data for the player shape is built up...
draw a picture on an 8-wide by n-high piece of
grid paper* filling in whole cells. Call a
filled in call a '1' bit« empty cells are '0'.
Convert the I's and O's to hex notation and
thence to decimal.

This program will run noticably faster if you use multiple
statements per line. It was written as above for
clarity, only.

82

2. A morw coiiplic«t»d programi sparstly cofflmantcd.

100 difli h«x»(19). t»<4> : h«x»>>''123496789ABCDEF"
110 graphics : rmm not nacassary< just prcttiar
120 PMORAPHICS 2 : PMCLR : PMCLR I

130 satcolor 2« 0. : PMCOLOR 0/12/8 : PMCOLOR 1/12/8
140 pO « PMAORCO) : pi - PMAORd) : ram addr's for 2 playars
150 vO - 60 : void vO : ram starting vartical position
160 hO - 110 : raiK starting horizontal position
200 for loc "vO-8 to vO+7 : ram a 16-high doubla plagar
210 raad t* : ram a hax string to t«
220 poka pO-»-loc/ 16*FIN0(hax«. t«< 1/ 1)/ 0) + FIND<hax», t»<2/ 2)/ 0)
230 poka pl-i-loc. 16*FIND(hax»/ 1»(3. 3)/0) FIND(hax«. t«<4. 4)/ 0)

: ram wa find a hax digit in the hax string; its dacimal
valua is its position (bacuz if digit is zaro it is
not found so FIND raturns ! >

240 naxt loc
300 ram ANIMATE IT
310 lat radius*40 : dag : ram 'lat' raquiredi RAD is keyword
320 WHILE 1 : ram forever ! !

!

330 c»int(16«rnd(0) > : pmcolor 0, C/ 8 : pmcolor 1,C.8
340 for angle to 3W step 5 : rem in degrees/ remember
350 vnaw int(vO + radius sin(angle))

360 vchange vnaw - void : rem change in vertical position
370 hnew « hO «> radius * cos(angle)
380 PMI10VE 0. hnawi vchange : PMMOVE li hnew<-8i vchange

: rem move two players together
390 void <B vnaw
400 sound 0/ hnew/ 10/ 12 : sound l/vnew/10/12
410 next angle
420 rem just did a full circle
430 ENDWHILE
440 rem we better NEVER get to here !

500 rem the fancy data ! 8421842184218421
510 DATA 03C0 i **«*

1

520 DATA 0C30 ! «« ** ;

530 DATA 1008 1 * * !

540 DATA 2004 < * * I

550 DATA 4002 i * * !

560 DATA 4E72 *** * 1

570 DATA 8A51 :* « « * * *i
580 DATA 8E71 i * »*« *** *!
590 DATA 8001 * *

!

600 DATA 9009 * * * i

610 DATA 4812 \ « « * * 1

620 DATA 47E2 i » ****** * \

630 DATA 2004 I * - * !

640 DATA 1008 i * 8

650 DATA 0C30 1 ** **
660 DATA 03C0 i ****

Notice how much easier it is to use the hex data. With FIND,
the hex to dacimal conversion is easy/ too.

The factor slowing this program the most is the SIN and COS
being calculated in the movement loop. If these values were
pre-calculatad and placed in an array this program would move!

83

EXTENDED ERROR DESCRIPTIONS

Th« •TTOT nu«b«r •xplan«tions in th« Atari Basic manuali uihil*

adcqu«t«< son«ti««s fail to giva all possible reasons that a
usar Might gat zapped with one. For this reason* and because
BASIC A-»- has added several new error Messages of its owni we
have included a new set of Error Descriptions.

Note that I/O related explanations are not included. The best
source of explanations for I/O errors is probably the Atari Dos
Hanual.

Note that the messages printed by BASIC A-t- arc shown at the top
of each description (beside the error nunber).

--information page only

—

ERROR NUNBER DECRIPTION

1 - BREAK KEY ABORT

While SET 0,1 mm% «p»cificd. th« operator hit th« BREAK
k«v. This trappable error gives the BASIC A-*- prograaMier
total eysteei control.

2 - HEM FULL

All avaiable «e«ory has been used. No aore statements
can be entered and no more variables (arithmetic* string
or array) can be defined.

3 - VALUE

An expression or variable evaluates to an incorrect value.

Example: An expression that can be converted to a
tMO byte integer in the range O to 65235
(hex FFFF) is called for and the given
expression is either too large or negative.

A * PEEK(-l)
DIM B(70000)

Both these statments will produce a value
error

Example: An expression that can be converted to a one
byte integer in the range to 255 hex(FF) is
called for and the given expression is too
large.

POKE 5000,750

This statement produces a value error.

Example: A^QR(-4) Produces a value error.

4 - TOO MANY VAR8

No more variables can be defined. The maximum number of
variables is 128.

9 - STRING LEN

A character beyond the DIMensioned or current length of a
string has been accessed.

Example: 1000 DIM A>(3)
2000 A»(5) « "A"

This will produce a string length error at
line 2000 when the program is RUN.

B - 4

6 - READ. NO DATA

A READ st«t«Mnt is cxscutcd but wc «r« «lr»«dy at th«
•nd at the l«st DATA it«t»a«nt.

7 - LINE t/VAL > 32767

A Una nuAbar largar than 32767 was antarad.

8 - INPUT/READ

Tha Xhff>UT or READ statamant did not raciava tha typa of
data it axpactad.

Exaaipla: INPUT A

If tha data antarad is 12AB than this arror
will rasult.

Exanpla: 1000 READ A
2000 PRINT A
3000 END
4000 DATA 12AB

Running this program will produca this arror.

9 - DIM

Exaapla: A string or an array was usad bafora it
was DIMansionad.

Exa«pla: A praviously DIMansionad string or array
is DIMansionad again.

1000 DIM A(10)
2000 DIM A<10)

This program producas a DIM arror.

10 - EXPR TOO COMPLEX

An axprassion is too complax for Basic to handle.
Tha solution is to braak tha calculation into two or
mora Basic statamants.

11 - OVERFLOW

Tha floating point routines have produced a number
that is either too large or too small.

12 - NO SUCH LINE •

Tha line number req.uired for a GOTO or GOSUB does
not exist.
Tha GOTO may be implied as in:

1000 IF A-B THEN 900

B - 5

Th« 00T0/008UB may bm part of an ON «tat«m*nt.

13 - NEXT. NO FOR

A NEXT was ancountarad but thera is no information
about a FOR with tha sana variabla.

Exaapla: 1000 DIM A(10)
2000 REM FILL THE ARRAY
3000 FOR I » TO 10
4000 A(I> « I

9000 NEXT I

6000 REM PRINT THE ARRAY
7000 FOR K « O TO 10
8000 PRINT A(K}
9000 NEXT I

10000 END

Running this program will causa tha following output:

ERROR- 13 AT LINE 9000

NOTE: Impropar usa of POP could causa this error.

14 - LINE TOO LONG

Tha lina just antarad is longar than Basic can handle.
Tha solution is to break the line into multiple lines
by putting fewer statements on a line/ or by evaluating
tha expression in multiple statements.

19 - LINE DELETED

Tha line containing a GOSUB or FOR was deleted after
it was executed but before the RETURN or NEXT was
executed.
This can happen ifi while running a programi a STOP is
executed after the GOSUB or FOR» then the line containing
the GOSUB or FOR is deleted/ then the user types CONT
and the program tries to execute the RETURN or NEXT.

Example: 1000 GOSUB 2000
1100 PRINT "RETURNED FROM SUB"
1200 END
2000 PRINT "GOT TO SUB"
2100 STOP
2200 RETURN

If this program is run the print out is:

GOT TO SUB

STOPPED AT LINE 2100

Now if tha user deletes line 1000 and then types CONT
wa gat

B - 6

ERROR- 19 AT LIKE 2200

16 - RETURN. NO 008UB

A RETURN IMS tncountsrcd but vm h«v» no inforMtion
«bout « 008UB.

EiMplc: 1000 PRINT "THIS IS A TEST"
2000 RETURN

If this |irogr«A is run th« print out is:

THIS IS A TEST

ERROR- 16 AT LINE 2000

NOTE: iaiprop«r us* of POP could also caus* this error.

17 - BAD LINE

If whsn sntsring m program line a syntax error occursi
the line is saved with an indication that it is in
error. If the program is run without this line
being corrected, execution of the line will cause
this error.

NOTE: The saving of a line that contains a syntax
error can be useful when LISTing and ENTERing
programs.

18 - NOT NUMERIC

If when executing the VAL function, the string argument
does not start with a number, this message number is
generated.

Example: A - VAL<"ABC") produces this error.

19 - LOAD. TOO BIG

The program that the user is trying to LOAD is larger
than available memory.

This could happen if the user had used LONEM to change
the address at which Basic tables start, or if he is
LOAOing on a machine with less memory than the one on
which the program was SAVEd.

20 - FILE •

If the device/file number given in an I/O statement is
greater than 7 or less than O. then this error is issued.

Example: GET M. A

will produce this error.

B - 7

21 - NOT SAVE FILE

Thi« trror results if ths ussr triss to LOAD m fils
that IMS not crsatsd by SAVE.

22 - 'USINO' FORMAT

This error occurs if ths length of ths entire format
string in « PRINT USING stateaient is greater than 299.
It also occurs if the length of the sub-format for one
specific variable is greater than or equal to 60.

23 - 'USING' TOO BIG

The value of a variable in a PRINT USING statement is
greater than or equal to lE-»-90.

24 - 'USING' TYPE

In a PRINT USING statement* the format indicates that a
variable is a numeric when in fact the variable is a
string. Or the format indicates the variable is a string
when it is actually a numeric.

Example: PRINT USING "«««". A»
PRINT USING "%XX",A

Will produce this error.

29 - DIM MISMATCH

The string being retreived by RGET from a device (ie. the
one written by RPUT) has a different DIMension length than
the string variable to which it is to be assigned.

26 - TYPE MISMATCH

The record being retreived by RGET (ie. the one written by
RPUT) is a numeric* but the variable to which it is to be
assigned is a string. Or the record is a string, but the
variable is a numeric.

B - 8

27 - INPUT ABORT

An INPUT ftat«««nt was executed and the user entered
cntl-C (return).

28 - NESTING

The end of a control structure such as ENDIF or ENDWHILE
IMS encountered but the run-time stack did not have the
corresponding beginning structure on the Top of Stack.

Exaeip le:

10 While 1 : Rem loop forever
20 gosub 100
100 ENDWHILE

Endwhile finds the OOSUB on Top of Stack and
issues the error.

29 - PLAYER/MISSILE NUMBER

Players must be numbered from 0-3 and missiles from 4-7.

30 - PM GRAPHICS NOT ACTIVE

The user attempted to use a PMG statement other than
PMCRAPHICS before executing PMGRAPHICS 1 or PMGRAPHICS 2.

31 - FATAL SYSTEM ERROR

Record circumstances leading to this error and report it
to us immediately.

32 - END OF 'ENTER'

This is the error resulting from a program segment such as:
SET 9,1 : TRAP line« : ENTER filename

when the ENTER terminates normally.

B - 9

NEW APPENDICES

Th« following pagos intonded to bo throe now Appondicos to
tho Atari Basic Mnuali again with the purposo of proporly
upgrading it to a BASIC A-»- manual.

READ APPENDIX J CAREFULLY !

Appondix J lists tho known points of incompatibility
botwoon standard Atari Basic and BASIC A+. You will
bo surprised to find how minor tho difforoncos aro
(and how easy it is to got around ovon those differences).

Appendix K is our attempt to provide you with a usable
index. It lists all keywords AS WELL AS THE STATEMENT
SYNTAX associated with them and gives a page number
reference. We hope you find it useful.

Appendix L will be useful to those of you who wish
to customize BASIC A* in some way.

--information page only--

APPENDIX J

COMPATIBILITIES

The following inco«p«tibilitits »v b«tw««n Atari Basic and

BASIC A-t- arc known to aiist:

1. BASIC A+ and Atari Basic SAVEd program filts aro NOT
COMPATIBLE 1!! Howovor/ tho LISTvd form of all Atari
Basic programs IS compatible with BASIC A-*-.

Solution: uso Atari cartridge to LOAD all SAVEd programsi
than LIST thoso programs to a disfcattoi then
go to BASIC A-t- and ENTER thom and (optional)
than SAVE tham in BASIC form.

2. Various documented RAM locations do not agree. The only
three locations known to be of any significance are
now deemed to be too volatile to document. Instead*
alternative methods of accessing their purposes are
provided

:

STOPLN — contained line • where a program stopped or
found an error — NOW accessible via ERR(l).

ERRSAV — contained the last run-time error number —
NOW accessible via ERR(0>.

PTABW — the 'tab' size used by PRINT when 'tabbing'
for a comma — NOW accessible via SET l.<ptabw>.

3. By defaulti BASIC A* allows the user to enter program text
in lower casei inverse video< or upper case characters.
Atari Basic allowed only upper case (non-inverse video)
characters. Normally* this is not a problemi however*
REMarks and DATA statements ENTERed which contain inverse
video and/or lower case characters will find that these
characters have been changed to normal video* upper case.

Reason: BASIC A-*- changes all inverse or lower case char-
acter strings NOT ENCLOSED IN QUOTES.
Solutions:

a. Put quotes into REMarks and DATA statements
as needed.

b. SET 3*0 — this will disable entering of
lower case and inverse characters; but if

you are ENTERing an Atari Basic program,
there will be none of these anyway.

L«)

y

0*

This paraaraph does not apply to version 3.04

now compatible with Atari BASIC **
ly*

I

jse

J - 1

these byta* «t all, so unless you havs custom drivers
the difference is unnoticable.

S. Similarly exotic: When OPENinj a file, t**- (usually)
dummy parameter normally set to z**"
OPEN ttf ile.mode.O, FL« }. A-
WELL AS THE MODE par-- ^ Atari
Basic. With

chosen because of its compatibility with
some (. „i capabilities.

ATARI vs. APPLE II: If you are a software author, there are
obvious advantages in having one BASIC A+ which will run
programs unchanged on two machines. Excepting for GRaphics
capabilities. Player /Missi le Graphics, SOUND, and some game
controls, BASIC A+ is completely compatible on the two
machines. Even graphics are compatible to some degree, but
see the Apple II BASIC A+ manual for more details.

Cartridge convenience: If you did not purchase OS/A+ (why not?)
BASIC A-*- may seem a little awkward to use, what with having to
LOAD it via the DOS menu, etc. Partial solution: after
duplicating the OSS master disk, RENAME the file BASIC.COM to
AUTORUN. SYS on any Atari DOS version 2S or 2.8 master disk.
Then, when you turn on the power. DOS will boot and immediately
run BASIC A+, Of course, you must still use RUN AT ADDRESS
to return to BASIC A+ after going to DOS, but you should need
to do that less frequently now that BASIC A+ gives you so
many extended DOS-like commands. Good luck. And try OS/A-»-
soon — remember it INCLUDES (at NO extra charge) an Editor/
Assembler/Debug package upward compatible with Atari's
cartridge (sound familiar ?) .

J - 2

APPENDIX K

SYNTAX SUnNARY AND KEYWORD INDEX

All k«vword«> grouped by tt«t«ai«nts «nd th«n functions* are
littod bolo« in alphabetical order. A page nueiber reference
is given to enable the user to quickly find more information
about each keyword.

STATEMENTS

page synta x

•BGET #fn> addr> len
»BPUT •fn< addr> len

o BYE
CU3AD
CLOSE tfn
CLR
COLOR aexp
CONT
CP
CSAVE

OP DATA <ascii data>
DEO

11« B •DEL line C. Iine3
^1 DIM svar <aexp >

Din flivar (aexpCiaexpl)
"SO—A *DIR filename
«£w DOS

»DPOKE addri aexp
DRAWTO aexpiaexp

99_A *ELSE {see IF>
o
r END
22-A «ENDIF {see IF>
22-B «ENDUHILE
29 ENTER filename
32-B ERASE filename
19 FOR avar«aexp TO aexp
28 GET •fni avar
16 eosuB line
17 GOTO line
49 GRAPHICS aexp
18 IF aexp THEN <stmts>
18 IF aexp THEN line
22-A •IF aexp : <stmts>

ELSE : <stmts>
ENDIF

32-A •INPUT var C« var. .

29 INPUT C*fn> 3 var C< var.
10-

A

•CLET3 svar'sexp C<sexp.
10-A CLET3 avara^exp
10-A CLET3 mvar*aexp

K - 1

10 LIST Cfil«n«M3
10 LIST Cfil«n«M. 3 line C« lin«3
26 LOAD fil«n«««
48 LOCATE asip* acxp* avar
12-A VLOHEM addr
26 LPRINT C«xp Zs mxp. . . 2 Z.9xp...l 1

12-A *LVAR fil mnmrnu
78 *MISSILE pfli< ««>p« ««xp
71 •MOVE froiMddri to««idr> l«n««xp
10 NEW
19 NEXT «v«r
26 NOTE n> «vari «v«r
20 ON asxp GOTO lin* Clin*...]
20 ON «»xp OOSUB Iin« G. line. . . 3

26 OPEN #fni «od«> «v«r< f i lcn«me
49 PLOT ««xp<««xp
75 *PnCLR pa
76 •PMCOLOR pmia«xp< a«xp
79 *PMORAPHICS ««xp
77 •PHMOVE pfliCi««xp3 Ciasxp]
76 «PMUIDTH pa. ««xp
28 POINT •fHi «v«r* avar
39 POKE addriaaxp
20 POP
49 POSITION aaxp.asxp
28 PRINT C*fn3
28 PRINT axp C Ci cxp. . . 1 Z. 0xp. . .] 1 til
28 PRINT ttfn C Zi cxp. . . 3 C. sxp. . . 3 3 Cj 3

32-C *PRINT Ctfn. 3 USING s«xp , CcxpC. axp. . . 3 3

32-B »PROTECT fil«na««
28 PUT ttfn. a«xp
39 RAO
28 READ var C« var. . . 3

10 REN <anv raMrk>
32-B •RENAME filana««s
21 RESTORE Clina3
16 RETURN
32-1 •RGET Mfni asvar Ciasvar. ..3
32-H »RPUT tfn. axpC. txp. . . 3

11 RUN CfilanaM3
29 SAVE filcnana
69 •SET a«xp«aaxp
90 SETCOLOR aaxp< aaxp* aaxp
97 SOUND aaxp< a«xp» aaxpi aaxp
29 STATUS •fn, avar
19 STEP <••• FOR>
11 STOP
32-0 •TAB C«fn3. avar
18 THEN IF>
19 TO {<•• FOR>
12r-A •TRACE
12-A •TRACEOFF
22 TRAP line
32-B •UNPROTECT fil«na«a
22-B •WHILE aaxp
30 XIO a«xp« acxpf a«xp> f ilanaaia
28i32-C ? <saM as PRINT>

K - 2

FUNCTIONS

33
39
37
34
79
37
33
34
36-A
36-A
33
40-B
39
60-A
33
38
34
99
60-A
79
99
39
34
34
39
34
99
60
38
69
36-B
36
38
60-A

mxp
««xp
s«xp
v«r
«v«r
svar
v«r

fn

NOTE:

syntax

AB8(a«xp>
ADR(«v«r)
A8C(««xp)
ATN(««xp>

*BUnP < pflinuflif «• X p)

CHR»(««xp>
CLOe(««xp)
C08(««xp >

*DPEEK(«ddr

>

•ERR(««xp)
EXP(a«xp)
•FXNO<s«xp« s«xp< a*xp

)

FRE(O)
•HSTICK(««xp)
XNT(««xp)
LEN(s«xp}
LOO(««xp)
PAODLE(««xp>
*PEN(a«xp>
«PHAOR(pfli)
PTRZG(««xp >

PEEK<«d(lr)
RNO(0>
SeN(««xp>
8XN(««xp)
SQR(««xp >

STZCK(«ttxp)
8TRie(««xp>
STRXavxp >

«SY8(a«xp>
•TAB(««xp>
USR(«ddr Ci««xp...])
VAL<s«xp)

*VSTZCK(««xp)

EXPLANATION OF TERHS

Expression
ArithMtic
string mtp
VARiabU
ArithMtic
String var
Hatrix var

(or tla«ant>
Fila Nuflibar

• xp

var

line - lino nu«bor (can
bo aoxp)

pm - Plavor/Missi !• number
(aoxp

)

Cxxx3 XXX is optional
Cxxx. . .] XXX is optional! and

m»^ bo ropoatod
addr - AODRoss aexp« Must bo

O - 69939
<st«ts> ono or «oro statOMonts

keyiords denoted by an asterisk («) not in Atari Basic.

K

APPENDIX L

BASIC A+ HEnORY USAGE

This svction datcribas •aorg usag» INTERNAL to th« BASIC A-4-

intmrprmtrnvi in what was ROM in tha Atari Basic cartridga.
Saa tha aaaiory aiap (appandix D> and mamorv locations (appan-
dii I) for RAM locations.

Throughout this saction« hax addrassas ara usad axclusively.
Whanavar thraa addrassas ara givan togathar saparatad by
slashas (a. g. , 4000/6000/8000) thay reprasant tha three
values associated with systens which have 32Ki 40Ki and 48K
bytes of free RAM available.

CHARACTER GRAPHICS RESERVED AREA 4000/6000/8000
IK bytes of neiiory are reserved for character
graphics. By reserving this Memory at fixed
locations (at least for any given machine size>.
the task of writing character set manipulators
is greatly reduced.
P. 8. : You can find the address of this area via
the following subterfuge:
Charactargraphicsaddress « (PMADR (> -9000) &

(
^ 4«4096

>

NOTE: if you do not intend to use character graphics*
you can use this area for assembly language routines*
etc.

COU>START 4400/6400/8400
Where BASIC A* comes upon loading from disk. Entering
at this address performs the equivalent of a NEW.

WARMSTART 4403/6403/8403
Equivalent to where Atari Basic goes when the RESET
key is used. Does not destroy any program* but does
close files> etc.

JUMP TO TEST FOR BREAK 4406/6406/8406
BASIC A-i- checks for the user's use of the BREAK key
at the end of executing each line. Exotic driver's
might make use of this fact to cause pseudo-interrupts
to BASIC A-*- at this point. Write for more details* but
otherwise don't touch this.

THE SET/SYS (> DEFAULT VALUES 4409/6409/8409
Upon execution of NEW* the set of 10 default byte values
(SET through SET 9) are moved from this location to
'RAM'. If you would like to change a default. POKE these
default values and then save BASIC A-t- via OS/A-*-.

4409 (etc. > is SET 0. 440A is SET 1. etc.

CURRENT TOP OF BASIC A-«- appro'x. 7800/9800/B800
But wa expect to add features* so if you wish to customize
BASIC A-*- in this area wa suggest you work from the next

L - 1

addr«««(cs> down:

DEFINED TOP OF BASIC A+ 7B00/9B00/BB00
This is where Players from Playtr/Missile Graphics start in
PHC. 1 oda. Also, the area from 7C00/9C00/BC00 up is used
by Atari's OS ROM upon RESET and power up to initialize the
graphics screen.

L - 2

