
ATARI® PROGRAM EXCHANGE

ATARP PASCAL LANGUAGE SYSTEM

APX-20102

March 1982

User-Written Software for ATARI Home Computers

m R * ... a * ; :. > 3*2 ■

v..

3 r

;

T 0 ft r 'ft. / ■
1 •

I. . ■■■

(ft)

ATARI®

PASCAL LANGUAGE SYSTEM

REFERENCE OPERATIONS MANUAL

COPYRIGHT 1982 ATARI, INC. (© ALL RIGHTS RESERVED

Copyright and right to make backup copies. On receipt of this computer

program and associated documentation (the software), ATARI grants to

you a nonexclusive license to execute the enclosed software and to

make backup copies of the computer program for your personal use only,

and only on the condition that all copies are conspicuously marked

with the same copyright notices as appear on the original. This

software is copyrighted. You are prohibited from reproducing,

translating, or distributing this software in any unauthorized manner.

Notice: The names and addresses used in this manual are fictitious

and are included for demonstration purposes only.

TRADEMARKS OF ATARI

The following are trademarks of Atari, Inc»

ATARI®

ATARI 400,mHome Computer

ATARI 300,mHome Computer

ATARI 410,mProgram Recorder

ATARI SlO'Disk Drive

ATARI 820,m40-Column Printer

ATARI 822,mThermal Printer

ATARI 825,m80-Column Printer

ATARI 330-" Acoustic Modem

ATARI 850tm Interface Module

ATARI Program-Text Editor

ATARI Disk Operating System (DOS II)

ATARI BASI'w

Distributed by

The ATARI Program Exchange

P. O* Box 427

155 Moffett Park Drive, B-l

Sunnyvale, CA 94086

To request an APX Software Catalog, write to the address above, or call toll-freei

800/538-1862 (outside California)

800/672-1850 (within California)

Or call our Sales number, 408/745-5535*

f f

K * . -. ■ 1 - « I .♦ »

». » *...

XMPORTANT!

PROGRAM!

This AFX diskette is unnotched to protect the software against

accidental erasure* However, this protection also prevents a program

from staring information on the diskette* The program you've

purchased involves storing information* Therefore, before you can use

the program, you must duplicate the contents of the diskette onto a

notched diskette that doesn't have a write-protect tab covering the

notch*

To duplicate the diskette, call the Disk Operating System (DOS) menu

and select option J, Duplicate Disk* You can use this option with a

single disk drive by manually swapping source (the AFX diskette) and

destination (a notched diskette) until the duplication process is

complete* You can also use this option with multiple disk drive

systems by inserting source and destination diskettes in two separate

drives and letting the duplication process proceed automatically*

(Note* This option copies sector by sector* Therefore, when the

duplication is complete, any files previously stored on the

destination diskette will have been destroyed*)

V. Additional Terms and Conditions

A. Licensee understands and agrees that:

(1) The Run-Time System is distributed on an "as isn basis without

warranty of any kind by Atari.

(2) The entire risk as to the performance and quality of the

Run-Time System is with Licensee.

(3) Should the Run-Time System as incorporated into Licensee's products

prove defective following its purchase, Licensee and not Atari,

Atari s
i^ftributorsf or retailers, assumes all costs associated with

se of Licensee's products including all necessary

(4) Atari shall have no liability to Licensee or to customers of Licensee

for loss or damage, including incidental and/or consequential damage,

caused or alleged to be caused, directly or indirectly, by the

Run-Time System. This includes, but is not limited to, any

interruption in service or loss of business or anticipatory profits

resulting from the use or operation of the Run-Time System.

iJf'J^ffZEKZ. Shf1
11 j,ndemn.if.y and hold Atari harmless from any claim,

loss, or liability allegedly arising out of or relating to the operation of the

nun-Tune System as used by Licensee or customers of Licensee pursuant to this

v.- /£* Li^ensee snail not suggest, imply or indicate in any manner that any of

his/her software products which incorporate or use the licensed Run-Time System

are approved or endorsed by Atari. y

- e
D- Licensee acknowledges that a failure to conform to the provisions

-J^f5 ^ '^S^,°? V Wil1 CauSe Atari Sparable harm and Atari's
remedies at law will be inadequate. Licensee acknowledges and agrees that

A^-^a1^ ^ve .the ri.gh>. in a^ition to any other

immediate injunction enjoining any breach of Licensee's obligations set forth

in Section V.C above.

E. No waiver or modification of any provisions of this Agreement shall be

jS^iS• -SS ln ^L±tini ^ Signed the against whom such waiver or
modification is sought to be enforced. No failure or delay by either party in

exercising any right, power or remedy under this Agreement shall operate as a

waiver of any such right, power or remedy.

F. This Agreement shall bind and work to the benefit of the successors and

SliSion* ^^rtieS he^to. Licensee may not assign rights or delegate

obligations which arise under this Agreement to any third party without the

express written consent of Atari. Any such assignment or delegation, without

written consent of Atari, shall be void.

#59(A2) 2/23/82

G. The validity, construction and performance of this Agreement shall

be governed by the substantive law of the State of California and of the

United States of America excluding that body of law related to choice of law.

Any action or proceeding brought to enforce the terms of this Agreement shall

be brought in the County of Santa Clara, State of California (if under State

law) or the Northern District of California (if under Federal law).

H. In the event of any legal proceeding between the parties arising from

this Agreement, the prevailing party shall be entitled to recover, in addition

to any other relief awarded or granted, its reasonable costs and expenses,

including attorneys' fees, incurred in the proceeding.

VI. Specific Disk Operating System Exclusion

The license granted herein does not relate in any way to the ATARI®

Disk Operating System, DOS II. Inquiries relating to such a license should be

sent to:

Atari, Inc.

Heme Computer Division

60 East Plumeria Drive

San Jose, CA 95134

Attn: Software Acquisition Group

For Atari:

By:

\

1265 Borregas Avenue Name:
Bruce W. Irvine

—

P.O. Box 427 Title: V.P. , HCD Software

Sunnyvale, CA 94086 Date:
2i li£ -

#59(A3) 2/23/82

TABLE OF CONTENTS

CHAPTER 1: ATARI PASCAL INTRODUCTION AND OVERVIEW 1

1. 1 Manual Overview 2

1. 2 System Overview 3

1. 3 System Requirements 3

1. 4 Run—Time Reauirements » • mm • I • mm »• • mm * • mm ■* • ■ • • 11 mf mt 4 •

1. S ATARI Pascal Distribution Disk^t* Information ** *••••*»• ■ «•» • ™» mm* mm mm w 1 «b W -rf ** W * * « « «■ ■fell* » X • • • — rf •*» —• I I 4

CHAPTER 2: HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM 6

2. 1 Compile/ Link and Run a Sample Proqram 7

2. i. 1 Compile Sample Program 7 *

1
Link Sample Program 9

V
1. 3 Run Sample Program 11

2. 2 Compiler Operation 12

2. 2. 1 Invocation and Filenames 12

2.
-i
CM • I.

•<
1 DOS and QUIT Options 12

1 c_ .
1
x.

*
Comp i1e 12

2. 2 - Cm Compilation Data 13

2. 2. 3 Compiler Toggles mmw www jmv wwm mm mm* m V wwm *TT ™j Q 14

2. 3. 1 Entry Point Record Generation (E) 14

BBh * CD ■ 3. 2 Include Files (I) 14

2. 2. 3. 3 Strict Tupe and Portability Checking (T/W) 14

2. 2. 3. 4 Run—Time Range Checking <R) » 9mm ■ ■ W ■ • ■ V • W mmf 9mm mmw W mmw mmm h * fl^V *M ™ W • • 15

2. 3. 5 Run—Time Exception Checking (X) w m mmw ww m warn » ■ » WMW mmm^m m % wwm wmr Mmw wm ^mw WmW w • warn * » v^v w w wmr W U WtmM 15

3. 6 Listing Controls (L»P) wmmmi wmW mwr wm mm 4 mm mmf mm? * * «■ » HJB aj MS mwmw * • ■ 15

2. 3. 7 Summaru o*F Compiler Toaales 16

2. 2. 4 Built—in Routines and Include Files 17

2. 2. 5 Error Messages 18

p baa • 6 Line Numbers mmm* m%* • « V» 1 1 III M# 1 «M IS

2. 3 Lin k er Ooeratinn 19

2. 3. 1 Invoration and Commands 19 * *

2. 3. 2 Li n k pr DnH nn ^iij i f r h P<; I— 1 1 1 H C 1 LJ Li w X w 1 1 w X u L (1 w 3 19

2. 3.
p

1 Rim —Ti m& I T h rn Roar r h (/^)
m

19

2. 3.
p

2 M^fnoT»u Man (/M) I ■ W If 1 W t 'm% 1 ICS W \ r 1 1 f 19 dm> f

2. 3.
p
Till V 3 Load Map (/L) and Extended Load Map </E> 19

2. 3. 2. 4 Program (/P> and Data </D) Origin 20

2. 3. 2. 5 Continuation Lines (/C) 20

2.
^3
•_' .

p
6 Linker Input Command File </F) 20

2.
r>

2. 7 Linker Switch Summary 21

2. 3. p 8 Relocatable File Requirements 21

2. 3. 2. 9 Linker Error Messages 21

2. 3. 2. 10 Attributes of Linkable Modules 22

2. 4 Object Program Execution 23

2. 5 ATARI Program-Text Editor (MEDIT) 24

2. 5. 1 Running the ATARI Program-Text Editor 24

CHAPTER 3: ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS 25

7. 7 Declaration and Denotation of Variables

7. 7. 1 Entire Variables

7. 7. 2 Component Variables

7. 7. 2. 1 Indexed Variables

7. 7. 2. 2 Field Designators

7. 7. 2. 3 File Suffers

7. 7. 3 Referenced Variables

7. 8 Expressions

7. s. i Operators

7. 8. 1. 1 The Operator NOT

7. 8. 1.2 Multip lying Operators

7. 8. 1. 3 Adding Operators

7. 8. 1. 4 Relational Operators

7. 8. 2 Func t i on Des i gnators

7. 9 Statements

7. 9. 1 Simple Statements

7. 9. 1. 1 Ass ignment Statements

7. 9. 1. 2 Procedure Statements

7. 9. i 3 GOTO Statements

7. 9. 2 Structured Statements

7. 9. 2. 1 Compound Statements

7. 9. 2. 2 Conditional Statements

7. 9. 2. 2. 1 If Statements

7. 9. 2. 2. 2 Case Statements

7. 9. 2. 3 Repetitive Statements

7. 9. 2. 3. 1 While Statements

7. 9. 2. 3. 2 Repeat Statements

7. 9. 2. 3. 3 FOR Statements

7. 9. 2. 4 With Statements

7. 10 Procedure Declarations

7. 10. 1 Standard Procedure's

7. 10. 1. 1 File Handling Procedures

7. 10. 1. 2 Dynamic Allocation Procedures

7. 10. 1. 3 Data Transfer Procedures

7. 10. 2 FORWARD

7. 10. 3 CONFORMANT ARRAYS

7. 11 Function Declarations

7. It, 1 Standard Func t ions

7. 11. 1. 1 Ar i thmet i c Func t ions

7. 11. 1.2 Pred i cates

7. 11. 1.3 Transfer Functions

7. 11.1.4 Further Standard Functions

7. 12 INPUT AND OUTPUT

7. 12. 1 The Procedure READ

7. The Procedure READLN

7. 12. 3 The Procedure WRITE

7. 12. 4 The Procedure WRITELN

7. 12. 5 Additional Procedures

7. 13 Programs

APPENDIX A: LANGUAGE SYNTAX DESCRIPTION 109

APPENDIX E: RESERVED WORDS 117

APPENDIX C: ERROR MESSAGES 118

APPENDIX- D: ATARI PASCAL FILE I/O 126

APPENDIX E: BIBLIOGRAPHY 142

APPEMDIX F: PLAYER/MISSILE DEMO PROGRAM 143

APPENDIX G: HELPFUL HINTS 152

INDEX 153

TABLE OF FIGURES

Figure 1- -1 Schematic Diagram of ATARI Pascal Operation 3

Figure D- -1 File Input and Output 130

Figure D* -2 Text Files 138

Figure D- -3 Writing to a printer and number Formatting 140

w

PREFACE

PASCAL - WHAT IS IT?

Pascal was created fay Niklaus Wirth to facilitate teaching a

systematic approach to computer programming and problem solving. This

high-level structured programming language is suited for professional

software developers/ making it an excellent tool for developing and

ma inta in ing programs.

PURPOSE OF THIS MANUAL

This reference and operations manual defines the language features of

ATARI Pascal and can help you to understand how to use these features.

This manual assumes familiarity with the Jensen and Wirth 's "Pascal

User Manual and Report" and/or International Standards Organzation

(ISO) draft standard (DPS/7185). The standard Pascal features that

differ in ATARI Pascal from those in the standard and in Jensen and

Wirth's "Report" are described here. This manual also contains

information on how to operate the compiler and linker; a description

of the implementation of ATARI Pascal data types; and a summary of

built-in features and examples of their usage.

AUDIENCE

This manual is specifically designed for advanced programmers who

are familiar with Pascal and with the features of the ATARI 800 Home

Computer System. This manual is not suited for learning Pascal or the

ATARI 800 Home Computer.

HOW TO USE THIS MANUAL

We recommend starting with the Introduction and Overview (Chapter 1)

and then proceed through Chapter 2, which describes how to operate the

system/ recommendations for backup and a sample program to get you

started. The rest of the manual is technical and should be referred to

'as needed.

PRODUCT CONSIDERATIONS

The ATARI Pascal Language System was designed for use by experienced

software developers. The steps required to compile an ATARI Pascal

program are time consuming. Memory limitations, diskette capacity and

access time will affect product performance. As with other APX

programs, ATARI does not support this product after the sale.

REPORTING PROBLEMS

All documented problems submitted to The ATARI Program Exchange will

be studied and considered in future revisions of this product.

CHAPTER I: ATARI PASCAL INTRODUCTION AND OVERVIEW

This manual describes the ATARI Pascal Language System being offered

through the ATARI Program Exchange as a softu/are development tool for

professional developers. ATARI Pascal is a pseudo-code compiler which

supports the International Standards Organization (ISO) draft standard

(DPS/7185 as of 10/1/80)* including variant records.- sets., typed and

text files/ passing procedures and functions as parameters/ GOTO out

of a procedure/ conformant arrays and program parameters. Additions

to the standard available in ATARI Pascal include:

Additional predefined scalars: BYTE/ WORD/ STRING.

Operators on integers & (and)/ \, / (or) !/ ? (NOT)

Else on CASE statement

Null Strings

Absolute Variables

External procedures

Additional built-in procedures and functions:

graphic/ sound/ and controller definitions

real and trancend enta1 definitions

move and fill procedures

bit and byte manipulation

file manipulation procedures

heap management aids

string manipulation

address and sizeof functions

Modular compilation facilities

In addition/ run-time error handling provides for divide by zero

check/ heap overflow check/ string overflow check/ range check and

user-supplied error routines.

ATARI Pascal has been designed for data processing applications

consisting of compilers/ editors/ linkers/ business/ and entertainment

packages. It is designed to operate with the ATARI Disk Operating

System 2. OS and is compatible with the ATARI Program Text-Editor CTM3.

This chapter presents an overview of this manual/ the system and

compilation and run-time system requirements/ and it describes the

files on the distribution diskettes.

Because of the availability of many text books on the Pascal

programming language/ this document is not a tutorial but rather a

reference manual and a detailed description of the extensions and

additions that make ATARI Pascal unique. Refer to the bibliography for

additional reference materials.

1. 1 Manual Overview

The following provides a brief overview of each chapter contained in

this manual.

Chapter 1: This chapter introduces and outlines the features of ATARI

Pascal, provides an overview of the system and identifies

the system requirements.

Chapter 2: This chapter gets you started. It describes the

options of the compiler and linker and it presents

step-by-step instructions to compile, link, and run a

sample program.

Chapter 3: This chapter describes the extensions to ATARI Pascal. It

presents such features as modular compilation, built-in

procedures, graphics and sound extensions.

Chapter 4: This chapter briefly summarizes of the run-time error

hand ling routines.

Chapter 5: This chapter describes the structure of a program generated

by the compiler. Data storage is also discussed in this

chap ter.

Chapter 6: This chapter briefly compares ATARI Pascal and UCSD Pascal.

Chapter 7: This chapter defines the language features of ATARI Pascal.

Appendix A: A complete description of the language syntax

Appendix B: The reserved words list

Appendix C: A complete description of each compilation error

message

Appendix D: ATARI Pascal File I/O

Appendix E: A bibliography of additional reading suggestions

Appendix F: Player/Missi1e Demo Program

Appendix G: Helpful Hints

2

1.2 System Overview

The ATARI Pascal Language System contains the Pascal monitor/

compiler; linker, run-time subroutine library and interpreter.

1-1 shows a diagram of the relationship among these products.

Reference to the ATARI Program-Text Editor (APX-20075) has been

included to show its relationship to ATARI Pascal.

! TEXT EDITOR!

t
I

V

Source

Program

file

i

V

t + < >temporary work file

COMPILER ! < error message file

+ h

I !
I t

V + Relocatable file run-time library

listing file I !

i i
i t

V V

+ +

I LINKER

+ +

i
i

V

executable program

re

i INTERPRETER

Figure 1-1 Schematic Diagram of ATARI Pascal Operation

The ATARI Program-Text Editor may be used to create and modify the

Pascal source program. The compiler is used to translate the source

program into relocatable machine code. The user then links this

machine code with the run-time subroutine library to produce an

executable object program.

1.3 System Requirements

The ATARI Pascal Language System requires the ATARI 800 with 48K of

RAM and two ATARI 810 Disk Drives. The ATARI 825 80-Column Printer and

the ATARI 850 Interface Module are optional. ATARI Pascal also

requires the ATARI Program-Text Editor. When using ATARI Pascal, no

cartridge should be inserted in the cartridge slot.

1.4 Run-Time Requirements

The ATARI Pascal Language System generates programs that use a variety

of run-time support subroutines that are extracted from PASLIE, the

run-time library, and other relocatable modules. These run-time

routines handle such needs as "multiply" and "divide" and file input

and output interface to the Operating System.

1. 5 ATARI Pascal Distribution Diskette Information

The ATARI Pascal Language System is distributed on diskettes

compatible with the ATARI 810 Disk Drive. The system consists of two

diskettes containing object/ source and relocatable files. Listed

below are the names of each file and a brief description of their

contents.

Diskette 1 PASCAL/LINKER

File Contents

DOS. SYS

DUP.SYS

PASCAL

MON

LINK

LINK. OVL

ATARI Disk Operating System

ATARI Disk Operating System

Interpreter used to execute all Pascal object programs.

Pascal monitor loaded by the PASCAL file, providing the

menu to specify the desired operation: compile, link, edit

or run.

Pascal linker used to take relocatable files (.ERL) and

run-time library files as input to create object files

(. COM).

Pascal linker part two.

PASLIB. ERL

FPLIB. ERL

GRSND. ERL

Run-time subroutine library in relocatable form. Should

always be linked last.

Run-time support routines for floating point arithmetic

and transcendental functions.

Run-time support routines for graphic, sound and

control ler functions.

CALC. PAS This is the source file for the Pascal demo program.

4

File Contents

Diskette 2 Pascal Compiler

PHO Phase O of the Pascal compiler used for syntax scan and

creation of token file.

PHI Phase 1 of the Pascal compiler used to create the

permanent symbol tables and build the user symbols.

PH2 Phase 2 of the Pascal compiler containing code generation

initiali zation.

PH3 Phase 3 of the Pascal compiler used to create the

relocatable object code file.

PH4 Phase 4 of the Pascal compiler used to complete the object

code generation.

ERRORS. TXT File containing ATASC11 text for error messages.

GSPROCS This file is the include file containing graphic/ sound

and controller definitions.

FLTPRQCS This file is the include file containing real number and

transcendental function declarations.

MOVES This file is the include file containing declarations for

character arrays.

BITPROCS This file is the include file containing declarations for

bit manipulation routines.

■9

HEAPSTUF This file is the include file containing declarations for

heap procedures.

DSKPROCS This file is the include file containing file manipulation

procedures.

STDPROCS This file is the include file containing standard Pascal

routines including the floating point routines.

ISOPROCS This file is the include file containing ISO standard

Pascal routines excluding floating point routines.

STRPROCS This file is the include file containing string processing

procedures and functions.

CHAPTER 2: HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM

This chapter describes how to use the ATARI Pascal Language System

contained on the PASCAL/LINKER and Pascal Compiler diskettes. It

covers the following information:

Section 1 provides step-by-step instructions on how to compile,

link and run a sample program.

Section 2 describes the compiler and its options.

Section 3 describes the linker and its options.

Section 4 describes how to run an object program.

Section 5 describes the ATARI Program Text-Editor.

6

2. 1 Compile; Link and Run a Sample Program

Before compiling and running the sample program described in this

section^ make a backup copy of all diskettes included in this

pac kage.

2. 1. 1 Compile Sample Program

Step One

Place the PASCAL/LINKER diskette into disk drive 1 and boot the Disk

Operating System 2.OS. Then use option C to copy the sample

calculation program "CALC. PAS" to a blank diskette on disk drive 2.

At this time use the L option to load the file named "PASCAL" from

disk drive 1. The Pascal menu will then appear.

ATARI Pascal

Version 1.0 : 1-Mai—82

(c) 1932 by ATARI

E) d it C)omp ile

Dink R)un

D)os Q)uit

Enter letter and CRETURN2:

Step Two

Respond to the Pascal menu displayed on the screen with the command

"C" CRETURNH to begin compilation.

When prompted for your source filename; type "D2:CALC. PAS" CRETURN3.

The monitor will then prompt you for a token and code file name.

Respond with CRETURN3 for each.

A message will then be displayed "Change Dl to compiler disk." At this

time place the Pascal Compiler (diskette 2) into disk drive 1 make

sure the sample program "CALC. PAS" is in disk drive 2 and then press

CRETURND.

The compiler will be loaded into memory and prompt you to choose a

listing device. Respond "P:" (printer)/ "E:" (screen), or CRETURN3

(no 1 isting).

The compiler will proceed to display the following compilation

statistics.

Loading Compiler

ATARI Pascal

Version 1.0 - l-Mar-82

(c> 1982 by ATARI

Syntax Scan

Creating: D2:CALC. TOK

Listing file, P: or E:

<return> for none

<:

<

File does not contain line numbers

< 0>

Including Text from File: Dl.STDPROCS

• * * »

< 32>

r 64>

96>

< 128>

End of Phase 0 (syntax / token file generation)

Source lines processed: 132

Loading Phase I

Open as input: D2:CALC.TOK

Open as output: D2:CALC. ERL

Available Memory: 4387

User Table Space: 3264

Version 1.0* Phase 1

Remaining Memory 2100

Version 1.0, Phase 2

(total symbol table space)

(after predefined symbols)

(one # for each routine body)

(after user symbols)

SUBREAL 18

ADDREAL 43

TF 64

CALC 119

MENU 915

CALCULAT

Ex ternal TRUNC

Ex terna1 SORT

Ex terna1 SIN

Ex terna1: ROUND

External: OUTPUT

External: LN

External: INPUT

Ex terna 1: EXP

Ex ternal: COS

External: ARCTAN

Lines : 130

Errors: 0

Code 1737

Data 64

(decimal offset from beginning)

REPLACE Dl THEN

Type <return> to continue

(place diskette 1 PASCAL/LINKER)

(in disk drive 1/ then press CRETURN3

Minutes later

The system will prompt you to "REPLACE Dl THEN Type CRETURN3 to

continue." At this time remove the Pascal Compiler from disk drive 1

and insert the PASCAL/LINKER in disk drive I then press [RETURN}.

The compilation process will then be completed and the Pascal menu

will display.

NOTE: If the compiler fails to complete compilation/ check to see if

the diskettes are in the proper drives. If they are try CSYSTEM

RESETX If both of these attempts fail/ the only recourse is to turn

off your computer and turn it on again.

2.1.2 Link Sample Program

Step One

To create the relocatable object file/ respond to the Pascal menu wit

the command "L" CRETURN3 to begin the linking process. At this time

the following will be displayed.

Loading Linker

when LINKER prompts with enter

your . ERL file names separated by

commas ending with PASLIE/S

Then type CRETURN3

LINKER VI. O

When prompted for your filename by an asterisk (*)/ you don't need to

use an extension (.ERL) but you must use the device prefix "D2: ".

The Pascal library routines must then be linked along with your

program.

At this time respond to the filename prompt with the following:

D2:CALC/FPLIB/PASLIB/S CRETURN3

NOTE: This program may be used as an example of using the Floating

Point Library (FPLIB) routines.

The linker will then display the following statistics and print

"LINK COMPLETE TYPE CRETURN3".

D2:CALC. ERL <48A7H>

Dl:FPLIB. ERL <2PFAH>

Dl.PASLIB. ERL <1F50H>

Undefined Symbols

— No Undefined Symbols —

11405 bytes written to D2:CALC. COM

Total Data : OOBEH bytes

Total Code : 2BCEH bytes

Remaining : 1442H bytes

Link complete type CRETURN3

At this time press CRETURN3 and the PASCAL menu will display.

2.1.3 Run Sample Program

To run the sample program respond to the Pascal menu with the command

"R,! then CRETURN3 to run the object program.

You will then be prompted for the filename and should respond u/ith the

foilowing:

D2:CALC. COM

The calculation program will begin execution displaying the message

"ENTER FIRST OPERAND?" Try this example for adding 5.5 to 99.256.

First respond with n5. 5U then CRETURN3. The message "Rl - 5. 500E+00"

should be displayed followed by "ENTER SECOND OPERAND?". Respond with

"99.256" then CRETURN3. The message "R2 = 9. 92560E+1" should be

displayed followed by "ENTER OPERATOR:" followed by a list of

operators. Respond with the operator "+" then CRETURN3. The result

"104.756" should then be displayed. You should now press the CESCAPE3

key to return to the DOS menu.

You have now completed the compilation* linking and running of your

first ATARI Pascal program!

2.2 Compiler Operation

2.2.1 Invocation and Filenames

The ATARI Pascal Language System is executed under the ATARI Disk

Operating System (DOS 2. OS). To execute the compiler, place the

PASCAL/LINKER (diskette 1) in disk drive 1 and LOAD the file called

PASCAL from the DOS menu. This file is the Pascal interpreter and u/ill

automatically call the Pascal monitor with a filename of MON. The

monitor then displays the following menu:

Enter letter and CRETURN3:

Select the first character of the desired function and enter this

character followed by a CRETURN3.

2.2.1.1 DOS and QUIT Options

The "DOS" and "GUIT" operation allows you to exit the Pascal menu and

return to the ATARI Disk Operating System.

2. 2. 1.2 Comp i le

When you select "C" for "Compile," the monitor will request you

to enter three file names and then load the compiler. The first

request is for the source file name. You may then respond with the

filename prefix (D2:) to identify the device, the input filename, and

the extension .PAS. The Compile function then requests the name for

the token and code files. If there is sufficient room on the diskette

containing the source file you may respond by simply depressing

CRETURN3 in response to these requests. If there is not sufficient

room you may specify that these files be placed on separate diskettes

by specifying the FULL file name as desired. NOTE: None of the

Compiler files may be cassette based.

A message will then be displayed "Change Dl to compiler disk." At this

time place the Pascal Compiler (diskette 2) in disk drive 1, place the

diskette containing your source program in disk drive 2 then press

CRETURN3. ATARI Pascal then creates a relocatable file <name>. ERL

which must be linked with the Pascal linker to the routines in the

run-time library (PASLIB).

ATARI Pascal

Version 1.0 : 1-Mai—82

(c) 1982 by ATARI

E) d i t

L> ink

D) os

C > omp i1e

R) un

G>uit

12

2.2.2 Compilation Data

The ATARI Pascal compiler will periodically display characters during

the first two phases of the compilation (Phase O and Phase 1).

A period (.) mi 11 be displayed on the console for every source code

line syntax scanned during Phase 0. At the beginning of Phase 1/ the

available memory space is displayed. This is the number of bytes (in

decimal) of memory before generation of the symbol table.

Approximately IK of the symbol table space is consumed by pre-defined

identifiers. When a procedure or function is found/ a pound sign (#)

will be displayed on the console. At the completion of Phase 1/ the

number of bytes remaining in memory is displayed in decimal.

Phase 2 generates object code. When the body of each procedure is

encountered the name of the procedure is displayed so that you

can see where the compiler is in the compilation of the program. The

linker /M (Map) option will list the absolute addresses of the

procedures in each module. Upon completion the following lines

display:

Lines : lines of source code compiled (in decimal).

Errors: number of errors detected.

Code bytes of code generated (in decimal).

Data bytes of data reserved (in decimal).

2.2.3 Compiler Toggles

A compiler toggle may be included in the source program to signal the

compiler that you wish to enable or disable certain options. The

format of this toggle is <** *> where the blanks are filled in

with the toggle. The compiler does not accept blanks before the key

letter or trailing or imbedded blanks in names but will skip over

leading blanks; e.g., (*$E +*) is the same as <**£+*>, but the (** E

+*) will be ignored.

Examp1es:

<»*I D:USERFILE. LIB* >

2.2.3.1 Entry Point Record Generation (E)

$E+ and $E- control the generation of entry point records in the

relocatable file. $E+ causes the global variables and all procedures

and functions to be available as entry points (i.e./ available to be

referenced by EXTERfMAL declarations in other modules). $E- supresses

the generation of these records thus causing the variables,

procedures, and functions to be logically private. The default state

is *E+ and the toggle may be turned on and off at will.

2.2.3.2 Include Files (I)

$I<filename> causes the compiler to include the named file in the

sequence of Pascal source statements. Filename specification includes

drive name and extension in standard format.

The format is as follows:

<**IDn:XXXXXXX*)

or

(**IDn:XXXXXXX.PAS*)

where n is the disk drive number

where XXXXXXX is the Include file name

Using these standard Include file procedures as examples, you may

create Include files to be used during the compilation process.

2.2.3.3 Strict Type and Portability Checking (T,W)

$T+, *T-# $W+, and $W- control the strict type checking / non-portable

warning facility. These features are tightly coupled (i.e. strict type

checking implies warning non-portable usage and vice versa). The

default state is ST- (*W-) in which type checking is relaxed and

warning messages are not generated. This may be turned on and off

throughout the source code as desired. A use of non-standard logic

and/or built-in routines will cause error 500 to be generated. This

error is not fatal but serves as a warning to the programmer. Code

14

generated with error 500 during the compilation will still execute

properly.

2.2.3.4 Run-time Range Checking (R)

$R + and #R- control the compiler's generation of run-time code which

mill perform range checking on arraq subscripting and storing into

subrange variables. The default state is $R- (off) and this toggle may

be turned on and off throughout the source code as desired.

2.2.3.5 Run-time Exception Checking (X)

$X + and $X- control the compiler's generation of run-time code* which

will perform run-time error checking and error handling for what is

termed exceptions. Exceptions are:

Zero divide

String overflow/truncation

Heap overflow

The system philosophy under which ATARI Pascal operates states that

zero divide and string overflow are treated in a "reasonable" manner

when exception checking is disabled. Zero divide returns the maximum

value for the data type and string overflow results in truncation of

the string rather than modification of adjacent memory areas. The

default state is $X- and may be changed throughout the source code as

desired. See chapter 4 for more discussion of run-time error handling

and options.

2.2.3.6 Listing Controls <L,P>

The *P and $L+# $L- toggles control the listing generated by the first

pass of the compiler. $P will cause a formfeed character (CHRC12)) to

be inserted into the . PRN file. $L+ and $L- are used to switch the

listing on and off throughout the source program and may be placed

wherever desired.

2.2.3.7 Summary of Compiler Toggles

Listed below is a summary of available compiler toggles:

Compiler Toggles Default

+ /~~ Controls entry point generation

$T +/-

$1 <name> Includes another source file into the

input stream <e. g.<**I XXX.LIB*)

$R + /- Controls range checking code $R-

*T

$W + /- Controls strict type checking and generation $W-

of warning messages

*X + /- Controls exception checking code *X-

*P Enter a formfeed in the . PRN file

*L +/- Controls the listing of source code $L+

16

2.2.4 Built-in Routines and Include Files

The ATARI Pascal compiler contains only the logic necessary for

defining "magic" pre-defined procedures/ functions and variables.

These are such routines as READ/ WRITE/ ADDR/ SIZEOF/ etc. which

require in-line code generation by the compiler or require support for

a variable number of parameters.

All other routines are defined using a special keyword "PREDEFINED"

and two special types ANYTYPE and ANYFILE. You must include in

the source program declarations for these routines. This is normally

done using the $1 toggle to include STDPROCS and other similar files.

STDPROCS contains declarations for procedures and functions defined by

the ISO standard for Pascal. Additional files contain declarations for

procedures and functions which are extensions to the ISO standard such

as string routines/ ASSIGN/ IORESULT etc. You may edit STDPROCS

and these files to contain only the routines necessary for a given

program.

This method of defining built-in routines is present because the ATARI

800 Home Computer has limited memory for all the declarations and user

symbols used in compiling large programs.

2. 2. 5 Error Messages

Compilation errors are numbered in the same sequence and meaning as

those in Jensen and Wirth's "User Manual and Report". The error

messagesi brief explanations, and some causes of the error are found

in Appendix C.
f

Error 407, Symbol Table Overflow: Occurs in Phase 1 when not enough

symbol table space remains for the current symbol. This may be

alleviated by breaking the program into modules.

2. 2. 6 Line Numbers

ATARI Pascal allows line numbers. When line numbers are desired/ the

first line of the program source file must contain a numeric value. It

then assumes all lines contain line numbers and the line number must

start in column one. Line numbers may be of any length and it should

be noted that they are ignored by the compiler.

13

2.3 Linker Operation

2.3.1 Invocation and Commands

LINK is used by executing the linker from the Monitor. Enter 'L' from

the Pascal menu followed fay CRETURN3 and the linker will load. The

linker will then prompt the user for the name of the main program and

modules to be linked/ separated by commas. The output is directed to

the same diskette as the main program unless you specify an output

file name followed by an equal sign before the main program name.

Example:
-■»

CALC,FPLIB/S, PASLIB/S

D2:CALC=CALCiFPLIE/PASLIB/S (CALC.COM is written to D2: >

The above command will link one of the demo programs with the run-time

package. The items to be linked may be preceded by a disk drive device

prefix:

D2:CALC, Dl:FPLIB, Dl: PASLIB/S

2.3.2 Linker Option Switches

The linker lets you to place a number of "switches" following the file

names in the list. Each switch is preceded by a slash (/) and is a

single letter. There is a parameter on the /P and /D switches.

•

2.3.2.1 Run-time Library Search </S>

The examples above show the use of the /S switch which/ commands the

linker to search the previously named relocatable file/ PASLIB/ as a

library and extract only the necessary modules. The /S switch

extracts modules only from libraries and does not extract procedures

and functions from separately compiled modules. It is position

dependent in that it must follow the name of the run—time library in

the linker command line as in the examples above. PASLIB is a

specially constructed/ searchable library. Other .ERL files supplied

with the system/ unless explicitly specified/ are not searchable.

User-created modules are not searchable. The order of modules within

a library is important.

Each searchable library must contain routines in the correct order and

be followed by /S for searching to occur. If /S is not specified the

entire contents of the library is loaded.

2. 3. 2. 2 Memory Map </M>

A /M following the last file named in the parameter list generates a

map to the screen.

2.3.2.3 Load Map (/L) and Extended Load Map </E>

A /L following the last module named causes the linker to display

module code and data locations as they are being linked. A /E

following the last module works as a modifier to /M and /L and causes

the linker to display all routines including those beginning with

7i or @, which are reserved for run-time library routine names.

2.3.2.4 Program (/P) and Data (/D) Origin

To support relocation of object code and data areas; the linker

supports the /P and /D switches. The /P switch controls the location

of the object area (ROM) and the /D switch controls the location of

the data area (RAM). The syntax is: /Pinnnn or /D:nnnn where "nnnn" is

a hexadecimal number in the range 0. . . FFFF.

In addition/ if you specify /D, the linker will not save any of the

data area in the . COM file. This is a good way for reducing the data

storage on diskette for programs/ since only the code will be loaded

from diskette and not uninitialized data areas. Note that local file

operations are not guaranteed if this is used because the system

depends on the linker zeroing the data area to make this facility work

properly.

Also, if /D is used/ more space is gained in the linking process

because the data is not intermixed with the code as it is being

linked. Using this switch is the first way to solve and "out of

memory" messages displayed by the linker.

Using the /P switch and /D switch does not cause the linker to leave

empty space at the beginning of the .COM file. The philosophy of the

linker is that if the /P switch is used/ you really want to move the

program to another system for execution. This means that if you

specify /P:8000/ the first byte of the .COM file will be placed at

location 8000H and not 32K of zeros before the first byte. In

addition/ if you specify /D the linker will not save any of the data

area in the .COM file. This is a good way for reducing the data

storage on diskette for programs since only the code will be loaded

from a diskette and not uninitialized data areas.

The switches /P and /D are specified after the last routine to be

loaded and may be in any order.

2.3.2.5 Continuation Lines (/C)

If a line needs to be continued enter /C after the last character on

the line before pressing the CRETURN3 key.

2.3.2.6 Linker Input Command File (/F)

The linker lets you enter data into a file and have the linker process

the file names from the file. You specify a file with an extension of

. CMD and follow this file name with a /F (e.g./ CFILES/F). The linker

will read input from this file and process the names just as if they

were typed from the computer keyboard. If the file contains more than

one line/ you must use /C after each line. If you wish to return to

20

the computer console for more input you may place /C on the last line

in the file. Data on the command line following the /F is ignored. A

.CMD file may not contain a line containing /F.

2.3.2.7 Linker Switch Summary

/S

/L

/M

/E

/P:nnnn

/D:nnnn

/F

/C

Search preceeding name as a library extracting only the

required routines.

List modules as are being linked

List all entry points in tabular form

List entry points beginning with $, ?

other entry points.

Relocate object code to nnnnH.

or £ in addition to

Relocate data area to nnnnH.

Take preceeding file name as a

names (see above for syntax).

Continuation Lines

.CMD file containing file

2.3.2.8 Relocatable File Requirements

The distribution diskettes contain several .ERL files that must be

linked into the program. The particular files depend on what group of

routines the compiler must reference/ based on the contents of your

program. Below is a list of each file and the routines it contains. If

you have any of these routines as an undefined reference* then link

the appropriate relocatable file to resolve the undefined reference.

FPLIB

PASLIB

GRSND

20

Floating point real numbers @ XOP, @RRL, @WRL (searchable)

Comparisons^ I/O* arithmetic support/ etc.

Graphics/ sound/ and controllers support

Linker Error Messages

The linker allows up to forty names

file input) for files to be linked.

on the command line (or command

Errors encountered in the linking process are usually

self-explanatory/ such as "unable to open input file: x x x x x x x x 11 and

"Duplicate symbol- xxxxxxx. " Duplicate symbol means that a run-time

routine or variable and user routine or variable have the same name.

Undefined reference indicates the appropriate relocatable file has not

been included. Refer to the preceeding paragraph on Relocatable File

Requirements.

If you run out of memory while linking, you may remove the data from

the code space a»ith the /D switch. You may need to run a test link

with the /D switch set very high to find out what the code size is,

then relink with the /D switch set just above the last code address

(with some room for code expansion).

2.3.2.10 Attributes of Linkable Modules

The linker will bind together ATARI Pascal main programs, Atari Pascal

modules, and assembly language modules created by an appropriate

assemb1er.

2.4 Object Program Execution

Once the source program has been successfully compiled and linked with

the appropriate run-time libraries you may execute or "Run" the

program.

When you select "R" for Run from the Pascal menu/ you will then be

asked for the object filename to run.

Example:

D2:CALC. COM

The object program will then be loaded into memory and executed.

2.5 ATARI Program-Text Editor (MEDIT >

The ATARI Program-Text Editor is a versatile tool that can be used to

create and modify source programs written in ATARI Pascal. This

product may be ordered through the ATARI Program Exchange (APX-20075)

or may be purchased with the ATARI Macro Assembler (CXS121)

2.5.1 Running the ATARI Program-Text Editor

The Pascal menu provides an option of calling the ATARI Program-Text

Editor. The default value of this option is disk drive 2. Prior to

using this option you must first make the following modifications.

1) Copy MEDIT from the distribution diskette to a blank diskette on

disk drive 2.

2) Load D2: MEDIT from the DOS menu using the "/N" option to prevent it

from running (this mill require the temporary presence of MEM. SAV

which can be deleted afterwards).

3) Save it back from DOS as follows: D2:MEDIT/A* 2600, 2601.

This append operation tells the "Pascal" program pointer to begin

execution at the MEDIT entry point.

Note: The append operation may also be used to run any assembly

language file from Pascal. The file must be appended with the start

address and start address plus one. If the file consists of many

disconnected modules scattered throughout the program/ make sure

the appended start address used is the run-time entry point.

24

CHAPTER 3: ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS

This chapter describes the function and use of ATARI Pascal

extensions.

It covers the following areas:

3. 1 Modular Compilation

3. 2 Data Allocation and Parameter Passing

3 Program Segmentation - Chaining

3. 4 Bui It-in Procedures

3. 5 Non-Standard Data Access

3. 6 Imbedded Assembly Code

3. 7 Graphics and Sound Extensions

3. 1 Modular Compilation

ATARI Pascal supports a flexible modular compilation system.

Programs may be developed in a monolithic fashion until they become

too large to manage (or compile) and then split into modules at that

time. The ATARI Pascal modular compilation system allows full access

to procedures and variables in any module from any other module. A

compiler toggle is provided to allow you to "hide" (i.e. make private)

any group of variables or procedures. See section 2.2.3.1 for a

discussion of the $E toggle.

The structure of a module is similar to that of a program. It begins

with the reserved word MODULE* followed by an identifier and

semi-colon (e.g., MODULE TEST1;) and ends with the reserved word

MODEND* followed by a period (e. g. / MODEND.). In between these two

lines you may declare label/ constant/ type* variable/ procedure and

function sections just as in a program. Unlike a program/ however/

there is no BEGIN. . END section after the procedure and function

declarations/ just the word MODEND followed by a period (.).

Examp1e:

MODULE MODI;

Clabel/ const/ type/ var declarations>

^procedure / function declarations and bodies>

MODEND.

To access variables/ procedures and functions in other modules (or in

the main program) a new reserved word/ EXTERNAL/ has been added and is

used for two purposes.

First/ the word EXTERNAL may be placed after the colon and before the

type in a GLOBAL variable declaration denoting that this variable list

is not actually to be allocated in this module but rather in another

module. No storage is allocated for variables declared in this way.

Example:

I,J/K, : EXTERNAL INTEGER; (* in another module *)

R: EXTERNAL RECORD (* again in another module ■*>

... (* some fields *)

END;

You MUST BE responsible for matching declaration identically/ because

the compiler and linker do not have the ability to type check.

Second/ the EXTERNAL word is used to declare procedures and functions

which exist in other modules. These declarations must appear before

the first normal procedure or function declaration in the

26

module/program. Externals mag only be declared at the global

(outermost) level of a program or module.

Just as in variable declarations, the ATARI Pascal language requires

you to make sure the number and type of parameters match exactly and

the returned type matches exactly for functions* because the compiler

and linker do not have the ability to type check across modules.

External routines may NOT have procedures and functions as parameters.

Note that in ATARI Pascal external names are significant only to seven

characters and not eight. When interfacing to assembly language/ limit

the length of identifiers accessible by assembly language to six

characters.

Listed belotu are a main program skeleton and a module skeleton. The

main program references variables and subprograms in the module/ and

the module references variables and subprograms in the main program.

The only differences between a main program and a module are that at

the beginning of a main program there are 16 bytes of header code

and a main program body following the procedures and functions.

Main Program Example:

PROGRAM EXTERNALJDEMO;

<label/ constant, type declarations>

VAR

I/J : INTEGER; <* AVAILABLE IN OTHER MODULES *>

K/L : EXTERNAL INTEGER; C* LOCATED ELSEWHERE *)

EXTERNAL PROCEDURE SORT (VAR Q:LIST; LEN:INTEGER>;

EXTERNAL FUNCTION IOTEST:INTEGER;

PROCEDURE PR0C1;

BEGIN

IF IOTEST ■ 1 THEN

(* CALL AN EXTERNAL FUNC NORMALLY *>

■ • •

END;

BEGIN

SORT(. ... > j

<* CALL AN EXTERNAL PROC NORMALLY *>

END.

Module Example:(Note these are separate files)

MODULE MODULE DEMO;

<Iabel/ const/ type declarations>

VAR

If J : EXTERNAL INTEGER; <* USE THOSE FROM MAIN PROGRAM *>

Ki L INTEGER/ <* DEFINE THESE HERE *>

EXTERNAL PROCEDURE PROC1; <* USE THE ONE FROM THE MAIN PROG

PROCEDURE SORT(. . .); <* DEFINE SORT HERE *>

FUNCTION IOTEST:INTEGER; <* DEFINE IOTEST HERE *>

•Cmaybe other procedures and functions here>

MODEND.

3.2 Data Allocation and Parameter Passing

3.2.I Data Allocation

In addition to accessing variables fay name, you must know how

variables are allocated in memory. Section 5.1 discusses the storage

allocation and format of each built-in scalar data type. Variables

allocated in the GLOBAL data area are allocated essentially shown

here. However, variables in an identifier list before a type (e.g., A

8, C : INTEGER) are allocated in reverse order (i.e., C first,

following by B, followed by A).

Example:

INTEGER;

CHAR;

BYTE;

INTEGER;

STORAGE LAYOUT:

+0 A LSB

A MSE

+2 B

+3 K

+4 J

+ 5 I

+6 L LSB

+7 L MSB

B

Is Ji K

L

Structured data types: ARRAYs, RECORDS and SETs require additional

explanation. ARRAYs are stored in ROW major order. For example

A: ARRAY CI.. 3,1.. 33 OF CHAR is stored as:

+0 AC1,13

•+•1 AC1, 23

+2 AC1,33

+3 AC2,13

+4 AC2,23

+5 AC2,33

+6 AC3, 13

+7 AC3, 23

+8 AC3, 33

This is logically a one-dimensional awa\j of vectors. In ATARI Pascal

all arrays are logically one-dimensional arrays of some other type.

RECORDS are stored in the same manner as global variables.

SETs are always stored as 32-byte items. Each element of the set is

stored as one bit. SETs are byte-oriented and the low order bit of

each byte is the first bit in that byte of the set. Shown below is the

set 'A'. . 'Z'

Byte number

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 ... IF

00 00 00 00 00 00 00 00 FE FF FF 07 00 00 00 00 00 . . . 00

The first bit is bit 65 (£41) and is found in byte 8, bit 1. The last

bit is bit 90 and is found in byte 11/ bit 2. In this dicussion bit 0

is the least significant bit in the byte.

30

*

3.2.2 Parameter Passing

When calling an assembly language routine from ATARI Pascal or calling

an ATARI Pascal routine from assembly language/ parameters are passed

on the stack. The parameter passing stack in ATARI Pascal is different

than the 6502 hardware stack. This software stack is at locations $600

through $6FF in memory. The hardware X register must be saved and

restored during execution of assembly language routines and is used as

the pointer to the software stack. You may load the top of the stack

using "LDA $600,XN etc. Upon entry to the routine* the top of the

hardware stack contains the return address. On the software stack,

in reverse order the declaration, (A,B:INTEGER;C:CHAR), would result

in C on top of B on top of A. Each parameter requires at least one

16-bit WORD of stack space. A character or boolean is passed as a

16-bit word with a high order byte of 00. VAR parameters are passed by

address. The address represents the byte of the variable with the

lowest memory address.

Non-scalar parameters (excluding SETs) are always passed by address.

If the parameter is a value parameter then code is generated by the

compiler in a Pascal routine to move the data. SET parameters are

passed by value on the stack and then the interpreter is used to store

them.

The example below shows a typical parameter list at entry to a

procedure:

PROCEDURE DEMO <It J : INTEGER; VAR Q:STRING; CD: CHAR);

AT ENTRY STACK <*600,X>:

+0 D

+ 1 BYTE OF

+2 C

+3 BYTE OF

+4 ADDRESS

+ 5 ADDRESS

+6 J (LSB)

+7 J (MSB)

I (LSB)

+9 I (MSB)

The assembly language program must remove all parameters from the

evaluation stack before returning to the calling routine.

SETs are stored on the stack with the least significant byte on

bottom (high address).

Function values are returned on the stack. They are placed "logically"

underneath the return address before the return is executed. They

therefore remain on the top of the stack after the calling program is

re-entered following the return. Assembly language functions may only

return the scalar types INTEGER, REAL/ BOOLEAN and CHAR.

3.3 Program Segmentation— Chaining

There are times when programs exceed the memory available and also

many times when segmentation of programs for compilation and

maintenance purposes is desired. ATARI Pascal provides a "chaining"

mechanism in which one program may transfer control to another

program.

You must declare an untyped file (FILE;) and use the ASSIGN and RESET

procedures to initialize the file. You may then execute a call to the

CHAIN procedure, passing the name of the file variable as a single

parameter. The run-time library routine will then perform the

appropriate functions to load in the file you opened using the RESET

statement. Program size does not matter. A small program may chain to

a large one and a large program may chain to a small one. If you

desire to communicate between the chained program you may choose to

communicate in two ways: shared global variables and ABSOLUTE

variables.

If you use the shared global variable method* you must guarantee that

at least the first section of global variables is the same in the two

programs wishing to communicate. The remainder of the global variables

need not be the same and the declaration of external variables in the

global section will not affect this mapping. In addition to having

matching declarations/ you must use the /D option switch available in

the linker (see section 2.3.2.4) to place the variables at the same

location in all programs wishing to communicate.

To use the ABSOLUTE variable method you would typically define a

record used as a communication area and then define this record at an

absolute location in each module. This method does not require using

the /D switch in the linker but does require knowledge of the memory

used by the program and system.

Listed below are two example programs that communicate with each other

using the ABSOLUTE variable method. The first program will CHAIN to

the second program, which will print the results of the first

program's execution:

32

Examp1e:

PROGRAM PROG1;

TYPE

COMMAREA = RECORD

I.J,K : INTEGER

END;

VAR

GLOBALS : ABSOLUTE C$80003 COMMAREA;

CHAINFIL: FILE;

BEGIN <* MAIN PROGRAM #1 *)

WITH GLOBALS DO

BEGIN

I : ■ 3;

J : = 3;

K : = I * J

END;

ASSIGN<CHAINFIL, 'Dl:PR0G2. COM'/;

RESET(CHAINFIL);

IF IORESULT <> 0 THEN

BEGIN

WRITELNC 'UNABLE TO OPEN Dl:PR0G2. COM ');

EXIT

END;

CHAIN(CHAINFIL >

END. (* END PR0G1 *)

<* PROGRAM #2 IN CHAIN DEMONSTRATION #>

PROGRAM PR0G2;

TYPE

COMMAREA = RECORD

I, J, K : INTEGER

END;

VAR

GLOBALS : ABSOLUTE C*80003 COMMAREA;

BEGIN <# PROGRAM #2 *)

WITH GLOBALS DO

WRI TELN('RESULT OF ', I, ' TIMES '.J. ' IS =', K)

END. <* RETURNS TO OPERATING SYSTEM WHEN COMPLETE

3.4 Built-in Procedures and Parameters

This section describes ATARI Pascal's built-in procedures and

functions. Each routine is described syntactically/ followed by

description of the parameters and an example program using the

procedure of the function. Section 3.4.2.5 is a quick reference

of all built-in procedures and functions.

3.4.1 MOVE, MOVERIGHT, MOVELEFT

PROCEDURE MOVE (SOURCE, DESTINATION, NUMJBYTES)

PROCEDURE MOVELEFT (SOURCE, DESTINATION, NUM_BYTES)

PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUMJ3YTES)

These procedures move the number of bytes contained in NUM_J3YTES from

the location named in SOURCE to the location named in DESTINATION.

MOVE is a synonym for MOVELEFT. MOVELEFT moves from the left end of

the source to the left end of the destination. MOVERIGHT moves from

the right end of the source to the right end of the destination (the

parameters passed to MOVERIGHT specify the left hand end of the

source and destination).

Use MOVELEFT and MOVERIGHT to transfer a byte from one data

structure to another or to move data around within a single data

structure. The move is done on a byte level so the data structure

type is ignored. MOVERIGHT is useful for transferring bytes from the

low end of an awa\i to the high end. Without this procedure, a FOR

loop would be required to pick up each character and put it down at a

higher address. MOVERIGHT is also much, much faster. MOVERIGHT is

ideal to use in an insert character routine whose purpose is to make

room for characters in a buffer.

MOVELEFT is useful for transferring bytes from one avva^ to another,

deleting characters from a buffer, or moving the values in one data

structure to another.

The source and destination may be any type of variable and both need

not be of the same type. These may also be pointers to variables or

integers used as pointers. They may not be named or literal constants

The number of bytes is an integer expression greater than zero.

Watch out for these problems:

1. Since no checking is performed as to whether the number of bytes i

greater than the size of the destination, spilling over into the

data storage adjacent to the destination will occur if the

destination is not large enough to hold the number of bytes.

2. Moving zero bytes moves nothing.

3. No type checking is done.

Example:

PROCEDURE MOVE DEMO;

CONST

STRINGSZ = 80;

VAR

BUFFER : STRINGCSTRINGSZ3;

LINE : STRING;

PROCEDURE INSRT(VAR DEST : STRING; INDEX : INTEGER; VAR SOURCE

STRING);

BEGIN

IF LENGTH(SOURCE) <- STRINGSZ - LENGTH(DEST) THEN

BEGIN

MOVER IGHT(DESTC INDEX 3, DESTC INDEX+LENGTH(SOURCE) 3,

LENGTH(DEST>-INDEX+1);

M0VELEFT(S0URCEC13, DESTCINDEX 3, LENGTH(SOURCE));

DESTCOD :=CHR(0RD(DESTC03) + LENGTH(SOURCE))

END;

END;

BEGIN

WRITELN('MOVE_DEMO ');

BUFFER := 'Judy J. Smith/ 335 Drive/ Lovely, Ca. 95666';

WRITELN(BUFFER);

LINE := 'Roland ';

INSRT(BUFFER, POS('5',BUFFER>+2,LINE);

WRITELN(BUFFER);

END;

THE OUTPUT FROM THIS PROCEDURE:

MOVE_DEMO

Judy J. Smith/ 355 Drive/ Lovely, Ca. 95666

Judy J. Smith/ 355 Roland Dive/ Lovely, Ca. 95666

3.4.2 EXIT

PROCEDURE EXIT;

EXIT is the equivalent of the RETURN statement in FORTRAN or BASIC.

It will leave the current procedure/function or main program. EXIT

will also load the registers and re-enable interrupts before exiting

if EXIT is used in an INTERRUPT procedure. It is usually executed as

a statement following a test.

Example:

PROCEDURE EXITTEST;

<*EXIT THE CURRENT FUNCTION OR MAIN PROGRAM.*)

PROCEDURE EXITPROC(BOOL : BOOLEAN);

BEGIN

IF BOOL THEN

BEGIN

WRXTELNC 'EXITING EXITPROC);

EXIT;

END;

WRITELN<'STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY');

END;

BEGIN

WRITELN('EXITTEST ');

EXITPROC(TRUE);

WRITELN(' IN EXITTEST AFTER 1ST CALL TO EXITPROC

EXITPROC(FALSE);

WRITELN('IN EXITTEST AFTER 2ND CALL TO EXITPROC

EXIT;

WRITELN<'THIS LINE WILL NEVER BE PRINTED');

END;

Output:

EXITTEST

EXITING EXITPROC

IN EXITTEST AFTER 1ST CALL TO EXITPROC

STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY

IN EXITTEST AFTER 2ND CALL TO EXITPROC

');

');

3.4. 3 TSTEIT, SETBIT, CLRBIT

FUNCTION TSTBITX BASIC_VAR, BIT NUM) : BOOLEAN;

PROCEDURE SETBIT<VAR BASIC_VAR, EIT_NUM>;

PROCEDURE CLRBIT(VAR BASIC_VAR, EITJMUM);

TSTBIT returns TRUE if the designated bit in the hasic_var is on, and

returns FALSE if the bit is off. SETBIT sets the designated bit in the

parameter. CLRBIT clears the designated bit in the parameter.

BASIC_VAR is any S or 16 bit variable such as integer, char, byte,

word, or boolean. BITJMUM is 0. . 15 with bit O on the right. Attempting

to set bit 10 of an 8 bit variable does not cause an error but has no

effect on the end result.

These procedures are useful for generating wait loops or altering

incoming data by flipping a bit where needed. Another application is

in manipulating a bit mapped screen.

Examp1e:

PROCEDURE TST_SET_CLR_BITS;

VAR

I : INTEGER;

BEGIN

WRITELN< 'TST_SET_CLR_BITS ');

I : m Oi

SETB IT (Ii 5);

IF I = 32 THEN

IF TSTEIT<1/5) THEN

WRITELN('1=', I);

CLRB IT (1,5);

IF I = O THEN

IF NOT (TSTBIT(I, 5)) THEN

WRITELN< '1=', I);

END;

Output:

TST_SET_CLR_BITS

1=32

1=0

3S

3. 4. 4 SHR, SHL

FUNCTION SHR<BASIC_VAR, NUM) : INTEGER;

FUNCTION SHL(BASIC_VAR, NUM) : INTEGER;

SHR shifts the BASIC_VAR by NUM bits to the right/ inserting 0 bits.

SHL shifts the BASIC_VAR by NUM bits to the left/ inserting O bits.

BASIC_VAR is an 8 or 16 bit variable. NUM is an integer expression.

The uses of SHR and SHL are generally obvious. For example/ suppose a

10 bit value is to be obtained from two separate input ports. You can

use SHL to read them in:

VAR

P0RT1 : ABSOLUTE C$D000II BYTE;

P0RT2 : ABSOLUTE C*D2323 BYTE;

X := SHLCP0RT1 & $1F, 3) ! (P0RT2 8c *1F>;

The above example reads from portl/ masks out the three high bits

returned from the INP away, and shifts the result left. Next/ this

result is logically OR'd with the input from port2/ which has also

been masked.

The following procedure demonstrates the expected result of executing

these two functions.

Example:

PROCEDURE SHIFT_DEMQ;

VAR I : INTEGER;

BEGIN

WRITELNC 'SHIFTJ3EM0 '>;

I : = 4;

WRITENLN('X«',l>i

WRITELNC 'SHR< 1,2) = '/ SHR < I / 2) >;

WRITELN('SHL< 1/ 4)="/ SHL(I, 4));

END;

Output:

SHIFT_DEMO

1=4

SHR<1/2> = 1

SHL(1/4)=64

39

3. 4. 5 HI, LO, SWAP

FUNCTION HI(BASIC _VAR) : INTEGER/

FUNCTION LO(BASIC_VAR) : INTEGER*

FUNCTION SWAP(BASIC_VAR) : INTEGER;

HI returns the upper 8 bits of BASIC_VAR (an 8 or 16 bit variable) in

the lower 8 bits of the result. LO returns the lower 8 bits with the

upper 8 bits forced to zero. SWAP returns the upper 8 bits of

BASIC_VAR in the lower 8 bits of the result and the lower 8 bits of

BASIC_VAR in the upper 8 bits of the result. Passing an 8 bit variable

to HI causes the result to be O and passing 8 bits to LO does nothing.

These functions enhance ATARI Pascal's abilities to read and write to

I/O ports. If a data item has 16 bits of information to send to a port

that can handle 8 bits at a time, use LO and HI to send the low byte

followed by the high byte. Similarly* reading 16 bits of data from a

port that sends 8 bits at a time may be performed by SWAPping the

first 8 bits into the high byte:

VAR

P0RT6 : ABSOLUTE C$0234 3 BYTE;

P0RT6 := LO(B);

P0RT6 : = HI(B >;

B SWAP(P0RT6) ! P0RT6;

The following example shows what the expected results of these

functions should be:

Example:

PROCEDURE HI_LO_SWAP;

VAR

HL : INTEGER;

BEGIN

WRITELN('HI_LQ_SWAP ');

HL := *104;

WR ITELN ('HL=', HL);

IF HI(HL) = 1 THEN

WRITELN('HI(HL) = ',HI(HL));

IF LO(HL) =4 THEN

WRITELN('LO(HL>=',LO(HL)>;

IF SWAP(HL) = $0401 THEN

WRITELN('SWAP(HL)=', SWAP(HL));

END;

Outp ut:

HI_LO_SWAP

HL=260

HI(HL)=1

LO C HL)=4

SWAP(HL)=1025

40

3. 4. 6 ADDR

FUNCTION ADDR(VARIABLE REFERENCE> : INTEGER;

ADDR returns the address of the variable referenced. Variable

reference includes procedure/function names* subscripted variables and

record fields. It does not include named constants* user defined

types* or any item that does not occupy code or data space.

This function is used to return the address of anything: compile time

tables generated by INLINE/ the address of a data structure to be

used in a move statement/ and so on.

Example:

PROCEDURE ADDR_DEMO(PARAM : INTEGER);

VAR

REC : RECORD

J : INTEGER;

BOOL : BOOLEAN;

END;

ADDRESS : INTEGER;

R : REAL;

SI : ARRAYC1. . 103 OF CHAR;

BEGIN

WRITELN('ADDR_DEM0 ');

WRITELN < 'ADDR(ADDR_DEMQ)='/ADDR<ADDR_DEMO));

WRITELN < 'ADDR(PARAM)='/ADDR(PARAM));

WR ITELN ('ADDR (REC)='/ ADDR (REC) Yi

WRITELN('ADDR(REC. J) ADDR(REC. J));

WRITELN(' ADDR(ADDRESS)-',ADDR(ADDRESS));

WRITELN(,ADDR(R)=//ADDR(R));

WRITELN('ADDR(SI)='/ADR(SI));

END;

Output is system dependent.

3. 4. 7 SIZEOF

FUNCTION SIZEOF(VARIABLE OR TYPE NAME) : INTEGER;

SIZEOF returns the size of the parameter in bytes. It is used in move

statements for the number of bytes to be moved. With SIZEOF you need

not keep changing constants as the program evolves. Parameter may be

any variable: character, array, record, etc, or any user-defined type.

Examp!•:

PROCEDURE SIZE_DEMO;

VAR

B : ARRAYC1. . 103 OF CHAR;

A : ARRAYC1. . 153 OF CHAR;

BEGIN

WRITELN('SIZE_D£MQ. ') ;

A := ' *#*#♦#♦*##****•*';

B := '0123456789';

WRITELN('SIZEOF(A)= ',SIZEOF(A), ' SIZEOF(B)=',SIZEOF(B)) ;

MOVE(B,A, SIZEOF(B));

WRITELN('A= ',A>;

END;

Outp ut:

SIZEOF(A)=l5 SIZE0F(B)=10

42

3. 4. S FILLCHAR

PROCEDURE FILLCHARC DESTINATION, LENGTH,CHARACTER)

This procedure fills the DESTINATION (a packed array of characters)

with the number of CHARACTERS specified by LENGTH. DESTINATION is

packed arrau of characters. It may be subscripted. LENGTH is an

integer expression. If LENGTH is greater than the length of

DESTINATION, adjacent code or data is overwritten. Also, if it is

negative, adjacent memory can be overwritten. CHARACTER is a literal

or variable of type char.

The purpose of FILLCHAR is to provide a fast method of filling in

large data structures with the same data. For instance, blanking out

buffers is done with FILLCHAR.

Example:

PROCEDURE FILLJJEMQ;

VAR

BUFFER : PACKED ARRAYC1. . 2563 OF CHAR;

BEGIN

FILLCHAR (BUFFER, 256, ' '); -C* BLANK THE BUFFERS *>

END;

3. 4. 9 LENGTH

FUNCTION LENGTH(STRING) : INTEGER;

This function returns the integer value of the length of the strin

Exarnp1e:

PROCEDURE LENGTH_pEMO;

VAR

SI : STRING C403;

BEGIN

SI := 'This string is 33 characters long';

WR I TELN('LENGTH OF Si, LENGTH (SI)) ;

WRITELN (' LENGTH OF EMPTY STRING = LENGTH <">);

END;

Output:

LENGTH OF This strinq is 33 characters 1ong=33

LENGTH OF EMPTY STRING - 0

44

3. 4. 10 CONCAT

FUNCTION CONCAT < SOURCE 1# SOURCES. * SOURCE) : STRING;

This function returns a string in which all sources in the parameter

list are concatenated. The sources may be string variables/ string

literals* or characters. A SOURCE of zero length can be concatenated

with no problem. If the total length of all SOURCES exceeds 56 bytes

the string is truncated at 256 bytes. See the note under COPY in the

next section concerning restrictions when using both CONCAT and COPY.

Example:

PROCEDURE C0NCATJ3EM0;

VAR

SI/ S2 : STRING;

BEGIN

51 := 'left links right link';

52 := 'root root root';

WRITELNCS1, '/ ', S2>;

SI :« CONCAT (Sir ' '#82, '!!!!!?'>!

WRITELN(Sl);

END;

Output:

left link, right link/root root root

left link/ right link root root root

45

3. 4. 11 COPY

FUNCTION COPY (SOURCE; LOCATION, NUMJ3YTE) : STRING;

Copy returns a string containing the number of characters specified in

NUM_BYTES from SOURCE beginning at the index specified in LOCATION

SOURCE must be a string. LOCATION and NUM_BYTES are integer

expressions. If LOCATION is out of bounds or is negative, no error

occurs. If NUMJ3YTES is negative or NUMJ3YTES plus LOCATION exceeds

the length of the SOURCE/ truncation occurs.

Example:

PROCEDURE COPY_DEMQ;

BEGIN

LONG_STR := 'Hi from Cardiff-by-the sea";

WRITELN (COPY(LONG_STR,9,LENGTH(LONG STR>-9+1)>;

END;

Ou t p ut;

Card iff-by-the-sea

Note:

COPY and CONCAT are "pseudo" string returning functions and have only

one statically allocated buffer for the return value. Therefore, if

these functions are used more than once within the same expression,

the value of each occurrence of these functions becomes the value of

the last occurrence. For instance, "IF (CONCAT(A, STRING1) =

(CONCAT(A, STRING2))11 will always be true because the concatenation of

A and STRING1 is replaced by that of A and STRING2. Also, "WRITELN

(COPYCSTRINGl,1,4), COPY(STRING1,5,4))" writes the second set of four

characters in STRING1 twice.

46

3. 4. 12 POS

FUNCTION POS< PATTERN/ SOURCE) INTEGER;

This function returns the integer value of the position of the first

occurrence of PATTERN in SOURCE. If the pattern is not foundi a zero

is returned. SOURCE is a string and PATTERN is a string* a character

or a literal.

Example:

PROCEDURE POSJ5EMO;

VAR

STR,PATTERN : STRING;

CH : CHAR;

BEGIN

STR := 'AECDEFGHIJKLMNO';

PATTERN := 'FGHIJ';

CH := 'B ';

WRITELN(/pos of ', PATTERN, ' in ', STR,

WRITELNC'pos of ',CH, ' in ',STR# ' i% '

is POS (PATTERN, STR));

i POS(CH, STR) >;

WRITELN('pos pf

END;

in ',STR, ' is ', PQ3< ' z ', STR >);

Output:

pos of FGHIJ in AECDEFGHIJKLMNO is 6

pos of B in ABCDEFGHIJKLMNO is 2

pos of 'Z' in AECDEFGHIJKLMNO is 0

47

(

3. 4. 13 DELETE

PROCEDURE DELETE (TARGET, INDEX, SIZE);

This procedure is used to remove SIZE characters from TARGET,

beginning at the byte named in INDEX. TARGET is a string. INDEX and

SIZE are integer expressions. If SIZE is zero, no action is taken. If

it is negative, serious errors result. If the INDEX plus the SIZE is

greater than the TARGET or if the TARGET is empty, the data and

surrounding memory can be destroyed.

Example:

PROCEDURE DELETE_DEMO;

VAR

LONG_STR : STRING;

BEGIN

LONG_STR :=' get rid of the leading blanks';

WRITELN < LONG_STR);

DELETE(LONG_STR, l,POS('g', LONG_STR)-1);

WRITELN(LONG STR);

END;

Output:

get rid of the leading blanks

get rid of the leading blanks

48

3. 4. 14 INSERT

PROCEDURE INSERT(SOURCE, DESTINATION, INDEX);

This procedure is used to insert the SOURCE into the DESTINATION at

the location specified in INDEX. DESTINATION is a string. SOURCE is a

character or string, literal or variable. INDEX is an integer

expression. SOURCE can be empty. If INDEX is out of bounds or

DESTINATION is empty, destruction of data occurs. If inserting SOURCE

into DESTINATION causes DESTINATION to be longer than allowed

DESTINATION is truncated.

Example:

PROCEDURE INSERTJDEMQ;

VAR

LONG_STR : STRING;

SI : STRING C103;

BEGIN

LONG STR := 'Remember May 9';

SI := 'Mother's Day, ';

INSERT(811 LONG_STR, 10) ;

WRITELN<LQNG_STR);

INSERT('to celebrate ',LONG_STR, 10);

WRITELN<LONG_STR);

END;

Output:

Remember Mother's Day, May 9

Remember to celebrate Mother's Day, May 9

49

3. 4. 15 ASSIGN

PROCEDURE ASSIGN (FILE, NAME);

Use this procedure to assign an external filename to a file variable

prior to a RESET or REWRITE. FILE is a filename/ NAME is a literal or

a vav iable string containing the name of the file to be created. FILE

must be of type TEXT to use the special device names below.

Note that standard Pascal defines a "local" file. ATARI Pascal

implements this facility using temporary filenames in the form

PASTMPxx where " x x" is sequentially assigned, starting at zero at the

beginning of each program. If an external file REWRITE is not

preceeded by an ASSIGN/ then a temporary filename will also be

assigned to this file before creation.

NAME is normally a diskette filename in the standard format:

dn:filename. ext but can also be a special device name.

Device Names

E:

S:

K:

P:

Console

Console

Console

Pr inter

screen editor device

screen output device

keyboard input device

output device

NOTE: Cassette (C: > files are not supported by ATARI Pascal.

Examples of ASSIGN usage:

ASSIGN < PR INTFILE / 'P: ');

ASSIGNCF/ 'D2:MT280. OVL'>;

ASSIGN(KEYBOARD/ 'K: ');

ASSIGN(CRT/ 'S: '> ;

Note: After ASSIGN(CRT, 'S: ') you must use REWRITE/ as the assign

does not open the file.

3. 4. 16 WNB, ONE

FUNCTION ONE(FILEVAR: FILE OF PAOC):CHARi

FUNCTION WNB(FILEVAR: FILE OF CHAR; CH:CHAR) : BOOLEAN;

These functions allow you to have EYTE-level access to a file in

a high speed manner. PAOC is any type that is fundamentally a Packed

Array Of Char. The size of the packed arra^ is optimally in the range

128. . 4095.

ONE will let you read a file a byte at a time. It returns a value of

type CHAR. The EOF function will be valid when the physical

end-of-file is reached but not based upon any data in the file.

WNB will let you write a file a byte at a time. It requires a file and

a character to write. It returns a boolean value that is true if there

was an error while writing that byte to the file. No interpretation is

done on the bytes that are written.

GNB and WNB are used (as opposed to P*# GET/PUT combinations) because

they are significantly faster.

3.4.17 BLOCKREAD, BLOCKWRITE

BLOCKREAD (F:FILEVAR; BUF:ANY; VAR IOR: INTEGER; SZ,RB:INTEGER)i

BLOCKWRITE(F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:INTEGER>;

These procedures are used for direct diskette access. FILEVAR is an

untyped file (FILE;). BUF is any variable large enough to hold the

data. IOR is an integer that receives the returned value from the DOS.

SZ is the number of bytes to transfer and RB should always be G.

The data is transferred either to or from the user's BUF variable for

the specified number of bytes.

3. 4. 18 OPEN

PROCEDURE OPEN (FILE, TITLE, RESULT);

The OPEN procedure increases the flexibility of ATARI Pascal. FILE is

any file type variable. TITLE is a string containing the filename.

RESULT is a VAR INTEGER parameter and upon return from OPEN has the

same value as IORESULT. The maximum number of files that may be opened

at any one time is three not including Console <E: i S: / or K: > files.

The OPEN procedure is the same as executing an ASSIGNCFILE, TITLE)/

RESET(FILE) and RESULT := IORESULT sequence.

Examples:

□PEN <INFILEi ' D:FNAME. DAT'. RESULT);

53

3. 4. 19 CLOSE/ CLOSEDEL

PROCEDURE CLOSE (FILE/ RESULT >;

PROCEDURE CLOSEDEL (FILE, RESULT);

The CLOSE and CLOSEDEL procedures are used for closing and closinq-

th-delete respectively. The CLOSE procedure must be called to

guarantee that data written to a file using any method is properly

purged from the file buffer to the diskette. The CLOSEDEL is normally

used on temporary files to delete them after use. FILE and RESULT are

the same as used in OPEN (see section 3.4.18).

Files are implicitly closed when an open file is RESET.

The CLOSE procedure is used in the file section of the appendix.

3. 4. 20 PURGE

PROCEDURE PURGE (FILE),

The PURGE procedure is used to delete a file whose name is stored in a

strinq. You must first ASSIGN the name to the file and then execute

PURGE.

Example:

ASSIGNCF, 'D2:BADFILE. BAD');

PURGE(F)i <* DELETE D2:BADFILE. BAD *)

55

3. 4. 21 IORESULT

FUNCTION IORESULT : INTEGER

After each I/O operation the value returned by the IORESULT function

is set fay the run-time library routines. On the ATARI Home Computer,

the general rule is that a non-zero value means an error and zero is a

good result.

Examp ie:

ASSIGN<F, 'D2:HELLO ');

RESET(F);

IF IORESULT O 0 THEN

WRITELN<'C: HELLO IS NOT PRESENT');

5 6

3.4.22 MEMAVAIL* MAXAVAIL

FUNCTION MEMAVAIL : INTEGER;

FUNCTION MAXAVAIL : INTEGER;

The functions MEMAVAIL and MAXAVAIL are used in conjunction with NEW

and DISPOSE to manage the HEAP memory area in ATARI Pascal. The

MEMAVAIL function returns the largest total available memory at any

given time irrespective of fragmentation. The MAXAVAIL function will

first garbage collect and then report the largest block available.

The MAXAVAIL function can be used to force a garbage collection befor

a time-sensitive section of programming.

The ATARI Pascal system fully supports the NEW and DISPOSE mechanism

defined by the Pascal Standard. The HEAP area grows from the end of

the data area and the stack frame (for recursion) grows from the top

of memory downward.

3.4.23 Quick Reference Guide to Built-in Procedures and Parameters

(Alphabetical within each group:)

Character arra^ manipulation routines

PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER);

PROCEDURE MOVELEFT < SOURCE, DESTINATION, NUMJBYTES);

PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES);

Bit and byte manipulation routines

PROCEDURE CLRBIT(BASIC _VAR, BIT NUM);

FUNCTION HI (BASIC _VAR)
•
• INTEGER;

FUNCTION LO (BASIC VAR >
•

INTEGER;

PROCEDURE SETBIK BASIC _VAR, BIT_ NUM);

FUNCTION SHL (BASIC VAR, NUMT
•
• INTEGER;

FUNCTION SHR (BASIC .VAR, NUM)
•
• INTEGER;

FUNCTION SWAP (BASIC _VAR)
•
• INTEGER;

FUNCTION TSTBIT(BASIC _VAR, BIT NUM) : BOOLEAN;

String handling routines

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

FUNCTION

FUNCTION

CONCAT

COPY

DELETE

INSERT

LENGTH

POS

(

(

(

(

(

(

SOURCE1, S0URCE2, . . . ,SOURCEn

SOURCE, LOCATION, NUMJ3YTES)

TARGET, INDEX, SIZE);

SOURCE, DESTINATION, INDEX);

STRING >

PATTERN, SOURCE)

STRING;

STRING;

INTEGER;

INTEGER;

File handling routines

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

ASSIGN (

BLOCKREAD (

BLOCKWRITE<

CLOSE (

CLOSEDEL (

GNB (

IORESULT

OPEN (

PURGE <

WNB (

FILE,

FILE,

FILE,

FILE,

FILE,

FILE

FILE,

FILE

FILE,

)

NAME);

BUF, IOR, NUMBYTES,

BUF, IOR, NUMBYTES,

RESULT);

);

: CHAR

: INTEGER;

RESULT);

RESULT

TITLE,

);

CHAR)

RELBLK);

RELBLN);

BOOLEAN;

Miscellaneous routines

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

FUNCTION

ADDR (VARIABLE REFERENCE)

EXIT;

MAXAVAIL : INTEGER;

MEMAVAIL : INTEGER;

SIZEOF< VARIABLE OR TYPE NAME)

INTEGER;

INTEGER;

58

3.5 Non-Standard Data Access

3. 5.I Absolute Variables

<absolute var> ::= ABSOLUTE C <constant>3 <var>

ABSOLUTE variables may be declared if you know the address at

compile time. You declare variable(s) to be absolute using

special syntax in a VAR declaration. ABSOLUTE variables are not

allocated any space in your data segment by the compiler and you are

responsible for making sure that no compiler-allocated variables

conflict with the absolute variables. NOTE: STRING VARIABLES MAY NOT

EXIST below C$1003 in memory.

Examples:

I: ABSOLUTE C$80003 INTEGER;

SCREEN: ABSOLUTE C$00003 ARRAYCO. . 153 OF ARRAYCO. . 633 OF CHAR;

3. 6 INLINE

ATARI Pascal has a very useful built-in feature called INLINE. This

feature lets you insert data in the middle of an ATARI

Pascal procedure or function. In this way small machine code or P-code

sequences and constant tables may be inserted into an ATARI Pascal

program.

3. 6. 1 Sy nta x

The syntax for the INLINE feature is very similar to that of a

procedure call in Pascal. The word INLINE is used followed by a left

parenthesis ,t(M followed by any number of arguments separated by the

slash character and terminated by a right parenthesis f,>". The

arguments between the slashes must be constants or variable references

that evaluate to constants. These constants can be of any of the

following types : CHAR, STRING, BOOLEAN, INTEGER or REAL. Note that a

STRING in quotes does not generate a length byte but simply the data

for the string.

Literal constants of type integer will be allocated one byte if the

value falls in the range 0 to 255. Named, declared, integer constants

which will always be allocated two bytes.

3.6.2 Applications

The INLINE facility can be used to insert code or to build

compile time tables. The following two sections give examples of each

of these uses.

60

The program fragment below demonstrates how the INLINE facility can be

used to construct a compile time table.

Examp i e:

PROGRAM DEMO_INLINEi

TYPE

IDFIELD - ARRAY CI.. 43 OF ARRAY CI. . 103 OF CHAR;

VAR

TPTR '"IDF I ELD;

PROCEDURE TABLE;

BEGIN

INLINE('ATARI

'HOME

'COMPUTER

'SYSTEMS. .

END;

' /

' /

' /

' >

BEGIN <* MAIN PROGRAM *>

TPTR :■ ADDR(TABLE)+5; C# +5 for P-code only *)

WRITELN(TPTR'*C33>; <* SHOULD WRITE 'COMPUTER)

END.

61

3.7 Graphics and Sound Documentation

The graphics, sound/ and controller package consists of an include

file, GSPROCS, and a Pascal module, GRSND. ERL. The include file

defines the entry points available in the Pascal module. The Pascal

module must be linked with your program.

To use the package, type (**ID:GSPROCS*) following the

variables of your program, and execute INITGRAPHICS as

statement in your main program.

Example:

PROGRAM GRSND;

LABEL

CONST

TYPE

global

the first

VAR

<* INCLUDE THE GRAPHICS AND SOUND DEFINITIONS *>

<*$ID:GSPROCS*)

<* LOCAL PROCEDURES *)

PROCEDURE XXXX;

BEGIN

END;

PROCEDURE YYYY;

BEGIN

END;

<* MAIN PROGRAM *>

BEGIN

INITGRAPHICS<5>; <* INITIALIZE GRAPHICS PACKAGE WITH A MAXIMUM

GRAPHICS MODE OF 5 *)

 ,

END.

The following sections describe each of the items available in the

graphics and sound package.

3.7. i Screen Types

TYPEs:

SCRN_TYPE = (SPLIT_SCREEN, FULL_SCREEN);

CLEAR_TYPE = (CLEAR_SCREEN, DO_NQT_CLEAR_SCREEN>;

These screen types are used by the GRAPHICS procedure to define the

type of screen and whether or not the screen will be cleared during

the GRAPHICS procedure.

3.7.2 Variables

VARs:

SCRNFILE : EXTERNAL TEXT;

GRRESULT : EXTERNAL INTEGER;

SCRNFILE may be used to do standard Pascal I/O to the screen such as:

WRITE(SCRNFILE/ 'A'/;

This variable will send an "A" to the screen and depending on the

current mode, the "A" will be displayed in some manner. Note this

technique is normally used only in graphics modes 1 and 2. For the

other graphics modes, use the procedures described below.

GRRESULT is used to determine if any errors occurred during one of the

graphics procedures. The following are the procedures and functions

that alter GRRESULT.

ERROR

ERROR

XIO CALL

XIO CALL

XIO CALL

XIO CALL

INITGRAPHICS

GRAPHICS

PLOT

LOCATE

FILL

DRAWTO

GRRESULT =

GRRESULT =

GRRESULT =

GRRESULT ■

GRRESULT =

GRRESULT =

0 OK, 255 =

0 OK, 255 =

RESULT FROM

RESULT FROM

RESULT FROM

RESULT FROM

3.7.3 Graphic Procedures and Functions

3. 7. 3. 1 Initialize Procedure

PROCEDURE INITGRAPHICS (MAX_J*10DE: INTEGER);

INITGRAPHICS must be the first statement of a program that uses the

graphics and sound module. There is one parameter:

MAX_MODE Maximum mode used by this program should be a value

from 0 to 9.

If an error occurs, the GRRESULT = 255; otherwise; GRRESULT = 0.

3.7.3.2 Graphics Procedure

PROCEDURE GRAPHICS(MODE: INTEGER; SCREEN: SCRN_TYPE; CLEAR:CLEAR_TYPE);

GRAPHICS performs the same function as the GRAPHICS statement in ATARI

BASIC, except it has three parameters instead of one.

*

MODE The desired graphics mode 0 to MAX_MQDE

SCREEN FULL.SCREEN or SPLIT-SCREEN

CLEAR CLEAR_SCREEN or DO JMOT_CLEAR_SCREEN

If an error occurs/ then GRRESULT » 255; otherwise, GRRESULT = 0.

3.7.3.3 Textmode Procedure

PROCEDURE TEXTMODE;

TEXTMODE closes "S:" and reopens "E:M. GRRESULT is unchanged.

3.7.3.4 Setcolor Procedure

PROCEDURE SETCOLOR(REGISTER,HUE,LUMINANCE:INTEGER);

SETCOLOR performs the same function as the SETCOLOR statement in ATARI

BASIC. GRRESULT is unchanged.

REGISTER A value from 0 to 4. Refer to section 9 of the ATARI

400/800 BASIC Reference Manual under SETCOLOR.

HUE A value from O to 15. Refer to section 9 of the ATARI

400/800 BASIC Reference Manual under SETCOLOR.

LUMINANCE A even value from 0 to 14. Refer to sectio 9 of the

ATARI 400/800 BASIC Reference Manual under SETCOLOR.

3.7.3.5 Color Procedure

PROCEDURE COLOR(COLOR_VALUE: INTEGER);

COLOR performs the same function as the COLOR statement in BASIC.

COLOR_VALUE A value from 0 to 255. Refer to section 9 of the ATARI

400/800 BASIC Reference Manual under COLOR.

3.7.3.6 Plot Procedure

PROCEDURE PLOT<X,Y:INTEGER);

PLOT performs the same function as the PLOT statement in ATARI BASIC

It plots a point in the current color at the screen position X/Y.

X the horizontal coordinate on the screen.

Y the vertical coordinate on the screen.

GRRESULT = value of an XIO PUT character call.

3. 7. 3. 7 Locate Procedure

FUNCTION LOCATE(X,Y:INTEGER):INTEGER;

LOCATE performs the same function as the LOCATE statement in ATARI

BASIC. It returns the pixel value at the screen position X/Y.

X the horizontal coordinate on the screen.

Y the vertical coordinate on the screen.

GRRESULT = value of an XIO GET character call.

3.7.3.8 Position Procedure

PROCEDURE POSITION(X/Y:INTEGER);

POSITION performs the same function as the POSITION statement in ATARI

EASIC. It moves the invisible graphics cursor to position X* Y. Note

the cursor is not moved until the next I/O function is performed.

X the horizontal coordinate on the screen.

Y the vertical coordinate on the screen.

3.7.3.9 Drauto Procedure

PROCEDURE DRAWTO<X,Y:INTEGER);

DRAWTO performs the same function as the DRAWTO statement in ATARI

BASIC. It draws a line from the current graphics position to position

X/Y in the current color.

X the horizontal coordinate on the screen.

Y the vertical coordinate on the screen.

£RRESULT = value of an XIO DRAWTO call.

3.7.3.10 Fill Procedure

PROCEDURE FILLCX*Y:INTEGER);

FILL performs the same function as the XIO 18 call in ATARI BASIC

except it performs a plot at position X/Y to move the cursor to X/Y at

the end of the FILL.

X the horizontal coordinate on the screen.

Y the vertical coordinate on the screen.

GGRESULT = value of an XIO FILL call.

3.7.4 Sound Procedures and Functions

3. 7. 4. 1 Sound Procedure

PROCEDURE SOUND<VOICE* PITCH* DISTORTION/VOLUME: INTEGER);

SOUND performs the same function as the SOUND statement in ATARI

BASIC. It turns on the sound channel indicated by VOICE at the

indicated PITCH, DISTORTION* and VOLUME.

VOICE One of the four sound channels at 0 to 3.

PITCH A value between O and 255. Refer to section 10 of the

ATARI BASIC manual under SOUND.

DISTORTION A even value from O to 14. Refer to section 10 of the

ATARI BASIC manual under SOUND.

VOLUME A value from 0 to 15. 0 is off* 15 is maximum volume.

3. 7. 4. 2 Soundof f Procedure

PROCEDURE SOUNDOFF;

SOUNDOFF turns off the sound to all the sound channels

3.7.5 Controller Functions

3. 7. 5. 1 Paddles

66

3. 7. 5. 1. 1 Paddle Function

FUNCTION PADDLE(PDLNUM:INTEGER):INTEGER;

PADDLE performs the same function as the PADDLE statement in ATARI

BASIC. It returns the current value of one of the eight paddles.

PDLNUM Is the paddle number to return; must be a value between

0 and 7.

3. 7. 5. 1. 2 Trigger Function

FUNCTION PTRIG(PDLNUM:INTEGER):INTEGER;

PTRIG performs the same function as the PTRIG statement in ATARI

BASIC. It returns the current trigger value of one of the eight

paddles.

PDLNUM Is the paddle number to return; must be a value between

0 and 7.

3. 7. 5. 2 Joy st ic ks

3.7.5.2.1 Stick Function

FUNCTION STICMSTKNUM: INTEGER): INTEGER;

STICK performs the same function as the STICK statement in ATARI

BASIC. It returns the current value of one of the four joysticks.

STKNUM Is the joystick number to return; must be a value

between 0 and 3.

CHAPTER 4: RUN-TIME ERROR HANDLING

The ATARI Pascal system supports two types of run-time checking:

range and exception.

Range checking is performed on arva^ subscripts and on subrange

assignments. The default condition of the system is that these checks

are disabled. You may enable them around any section of coding desired

using the *R and *X toggles (see sections 2.2.3.4 and 2.2.3.5). These

sections describe the implementation of this mechanism and how you may

take advantage of this mechanism to handle run-time errors in a

non-standard manner.

The general philosophy is that error checks and error routines will

set Boolean flags. These Boolean flags along with an error code will

be loaded onto the stack and the built-in routine @ERR is called with

these two parameters. The @ERR routine will then test the Boolean

parameter. If it is false then no error has occurred and the @ERR

routine will exit back to the compiled code and execution continues.

If it is true the @ERR routine will print an error message and lets

you continue or abort.

Listed below are the error numbers passed to the @ERR routine:

Value Meaning

1 Divide-by-0 check

2 Heap overflow check

3 String overflow check

4 Range check

4. 1 Range Chec k ing

When range checking is enabled the compiler generates calls to @CHK

for each array subscript and subrange assignment. The @CHK routine

leaves a Boolean value on the stack and the compiler generates calls

to @ERR after the @CHK call. If range checking is disabled and a

subscript falls outside the valid range/ unpredictable results will

occur. For subrange assignments* the value will be truncated at the

byte level.

4.2 Exception Checking

When exception checking is enabled/ the compiler will load the error

flags (zero divide/ string overflow/ and heap overflow) as needed and

call the @ERR routine after each operation that can set the flags. If

exception checking is disabled the run-time routines attempts to

provide a friendly action if possible: divide by zero results in a

68

maximum value being returned, heap overflow does nothing/ and string

overflow truncates.

4.3 User Supplied Handlers

You can write your own @ERR routine to be used instead of the system

routine. You should declare the routine as:

PROCEDURE @ERR(ERROR:BOOLEAN; ERRNUM:INTEGER);

The routine will be called/ as mentioned above/ each time an error

check is needed and this routine should check the ERROR variable and

exit if it is FALSE. You may decide the appropriate action if

the value is true. The values of ERRNUM are as shown in section 9.0.

4. 4 Fatal Errors

"Fatal Errors11 message can be deciphered for debugging purposes but

may be confusing. The error can be translated to the Pascal error

message and to the ATARI standard error message. The following example

will illustrate the translation process:

Fatal Error 64. 88 —> Pascal Error . ATARI Error

Using base 16 (non-standard/ 64 — 100 and 88 — 136

16 10 16 10

A Pascal 100 error for our system refers to an operating system error.

In this example we would then look at the ATARI ETTQT 136 message to

see that our error relates to an "EOF".

The following are predefined Pascal fatal errors.

64: Error while chaining.

65: Bad pseudo code.

66: Bad pseudo code.

67: Undefined pseudo opcode.

68: Stack overflow (program too complex).

69

CHAPTER 5: STRUCTURE/FORMAT OF A PASCAL PROGRAM

This chapter describes the data types and how they are stored. It also

discusses the use of strings.

A description of the layout of a . COM file in memory under DOS 2. OS is

presented.

5. i Data Types

This section describes how the standard Pascal data types are

implemented in ATARI Pascal. Table - summarizes the data types.

Data Type Size Range

CHAR 1 8-bit-byte 0. . 255

BOOLEAN 1 8-bit-byte false..true

INTEGER 1 8-bit-byte 0. . 255

INTEGER 2 8-bit-bytes -32768..32767

BYTE 1 8-bit-byte 0. . 255

WORD 2 8-bit-bytes 0. . 65535

FLOATING REAL 4 8-bit-bytes 10E-98..10E+98

STRING- 1. . 256 bytes

SET 32 8-bit-bytes 0. . 255

5. 1. 1 CHAR

The data type CHAR is implemented using one 8-bit byte for each

character. The reserved word PACKED is assumed on arrays of CHAR. CHAR

variables may have the range of CHR(O).. CHR(255). When pushed on the

stack, a CHAR variable is 16 bits, with the high-order byte containing

00. This is to allow 0D, ODD. CHR, and WRD to work together.

5. 1. 2 BOOLEAN

The data type BOOLEAN is implemented using one 8-bit byte for each

BOOLEAN variable. When pushed on the stack, 8 bits of O are pushed to

provide compatibility with built-in operators and routines. The

reserved word PACKED is allowed but does not compress the data

structure any more than one byte per element (this occurs with and

without the packed instruction). ORD(TRUE) = 0001 and ORD(FALSE) m

0000. The BOOLEAN operators AND, OR and NOT operate only on ONE byte.

Refer to the & and ! operators for 16-bit boolean operators.

iX I XIXIXIX I X i X10/1\ (X means don't care)

70

5. 1. 3 I INTEGER

The data type INTEGER is implemented using two 8-bit bytes for each

INTEGER variable. MAX INT - 32767 and INTEGERS can be in the range

-32768. . 32767. An integer subrange declared to be within the O. . 255

range occupies only one byte of memory instead of two bytes. Integer

constants may be hexadecimal numbers by preceeding the hex number with

a dollar sign (e.g. $0F3B).

5. 1. 4 REAL

The implementation of the data type REAL in ATARI Pascal is the same

as that used by ATARI BASIC. Six bytes of data are required to

implement a floating point number. The first byte contains the

mantissa sign/ the exponent in excess-64. The base of the exponent is

100. The remaining five bytes contain the mantissa in binary coded

decimal. The precision is approximately S digits.

+ /// +

< i i c i
> tiii

low mem {mantissa sign/exponent excess 64! ms! i Is Ihigh mem

+ /// +

ms m most significant bits

Is ■ least significant bits

5. 1. 5 Byte

The BYTE data type occupies a single byte. It is compatible with both

INTEGER and CHAR types. This compatibility can be very useful when

manipulating control characters/ handling character arithmetic/ etc.

Characters and integers may be assigned to a BYTE.

5. I. 6 Word

WORD is an unsigned/ native machine word. All arithmetic and

comparisons performed on expressions of type WORD are unsigned.

5. i. 7 Str ing

5. 1.7. 1 Definition

The pre-declared type STRING is like a packed array of characters in

which the byte O contains the dynamic length of the string/ and bytes

1 through n contain the characters. Strings may be up to 255

characters in length. The default length is 80 characters that may be

altered when a variable of type STRING is declared (see example

b e1ow >.

71

The string "This is a Wottle" is 16 characters long. The following

diagram shows h.oui these characters are stored in a string declared to

be 20 characters long.

low mem i16!T!hiiJsi lilsl la! !W!o!t!11 1Ie!?!?{?!?i high mem

If the number of characters in the string is less than the declared

length/ the bytes on the end are not defined. Note that the length

is stored in the first byte and the total number of bytes required

for the string is 17.

Example:

VAR

L0NG_STR: STRING; (This may contain up to 80 characters)

SH0RT_STR: STRINGC103; (This may contain up to 10 characters)

VERY_LONG_STR: STRINGC255 3• (This may contain up to 255 characters,

the maximum allowed.)

5. i. 7. 2 Assignment

Assignment to a string variable may be made via the assignment

statement, reading into a string variable using READ or READLN* or the

pre-defined string functions and procedures.

Example:

PROCEDURE ASSIGN;

VAR

L0NG_STR : STRING;

SH0RT_STR : STRING C123;

BEGIN

LQNG_STR :=,'This string may contain as many as eighty characters';

WRITELN(LONG_STR>;

WRITE('type in a string 10 characters or less : ');

READLN(SHORT_STR);

WRITELN(SHORT_STR);

SH0RT_J5TR := COPY(LQNG_STR, 1, 11);

WRITELN('COPY(LONG_STR. .) = ', SHORT_STR);

END;

Output:

This string may contain as many as eighty characters

type in a string 10 characters or less : <123456> (USER INPUT)

123456

COPY(LONG_STR. . >=This string m

72

The individual characters in a string variable are accessed as if the

string were an array of characters. Thus* normal arratj subcr ipting via

constants* variables/ and expressions allows assignment and access to

individual bytes within the string. Access to the string over its

entire declared length is legal and does not cause a run-time error

even if an access is made to a portion of the string beyond the

current dynamic length. If the string is actually 20 characters long

and the declared length is 30 then STRING L251 is accessible.

Examp1e:

PROCEDURE ACCESS;

VAR

I : INTEGER;

EEGIN

I := 15;

LQNG_STR := '123456789abcdef';

WRITELN(LONG_STR) ;

WRITELN<L0NG_STRC63, LONG STRC i~5 3);

LONG_STRC163 := '*';

WRITELN(LONG_STR C161>;

WRITELN(LONG_STR>; <* will still only write 15-characters *>

END;

Outp ut:

123456789abcdef

6a

*

123456789abcdef

73

5. 1. 7. 3 Comparisons

Comparisons are valid between two variables of type STRING (regardless

of their length) or between a variable and a literal string. Literal

strings are sequences of characters between single quotation marks.

Comparisons may also be made between a string and a character. The

compiler "forces" the character to become a string by using the CONCAT

buffer; therefore, comparison of the result of the CONCAT function and

a character is not meaningful because this comparison would always be

equal.

Example:

PROCEDURE COMPARE;

VAR

SI*S2 : STRINGC103;

CHI : CHAR;

BEGIN

51 := '012345678';

52 :- '222345678';

IF SI < S2 THEN

WRITELN(Si> ' is less than '# S2);

SI : ■ 'alpha beta ';

IF SI = 'alpha beta ' THEN

WRITELN('trailing blanks don''t matter')

ELSE

WRITELN< 'trailing blanks count');

IF SI = ' alpha beta' THEN

WRITELN('blanks in front don''t matter')

ELSE

WRITELN< 'blanks in front do matter');

IF SI = 'alpha beta' THEN

WRITELN<S1, ' = 'i SI);

SI := 'Z';

CHI : = 'Z';

IF SI = CHI THEN

WRITELN< 'strings and chars may be compared');

END;

Output:

012345678 is less than 222345678

trailing blanks don't matter

blanks in front do matter

alpha beta = alpha beta

strings and chars may be compared

74

5.1.7.4 Reading and Writing Strings
-

Strings may be written to a text file using the WRITE or WRITELN

procedure. WRITELN will cause a carriage return and line feed

following the string. Reading a string is always done via the READLN

statement because strings are terminated with a carriage return and

line feed. Using READ will not work/ because the end-of-line

characters are incorrectly processed. Tabs are expanded when they are

read into a variable of the STRIIMG type.

5. 1. 8 Set

The SET data type is always stored as a 32 byte item. Each element of

the set is stored as one bit. The low order bit of each byte is the

first bit in that byte of the set. Shown below is the set "A*. . "Z"

(bits 65. . 122)

Byte number 00 01 02 03 04 05 06 07 OS 09 OA OB OC . . . IF

Contents 00 00 00 00 00 00 00 00 FE FF FF 07 00 .. . 00

CHAPTER 6: COMPATIBILITY

Pascal is considerably more standardized than BASIC. Nearly every

version of Pascal is based on a definition of the language contained

in "Pascal User Manual and Report", by Kathleen Jensen and Niklaus

Wirth, Springer-Verlag, 1974. The Pascal Language System is a

superset of the Pascal described in this book. In addition, ATARI

Pascal meets a more recent standard, namely the ISO standard

(International Standards Organization, similar to ANSI). It is

expected that any Pascals developed from now on will certainly be

compared to this standard, and will strive to meet it. ATARI has

learned the importance of compatibility from its experience with ATARI

BASIC. A Pascal that meets the newly developed ISO standard is a very

positive step toward compatibility.

A possible compatibility problem is that the ATARI Pascal Language

System is not entirely compatible with UCSD Pascal. UCSD Pascal has

attained considerable popularity on small computers. While it is true

that ATARI Pascal is not completely compatible with UCSD Pascal, it

should be remembered that both versions are written around a common

core— Pascal as defined by Jensen and Wirth. The differences, though

present, are not as significant as, for example, the differences in

various BASICs. In addition, the superiority of the Pascal Language

System justifies the incompatibilities involved.

A brief comparison of the features that differ between the two Pascals

follows. Parts of this comparison is necessarily somewhat technical*

as most of the differences are deep in the details of the language.

*

76

6 1 Incompatabi1ities With UCSD Pascal

1. The predefined type INTERACTIVE is available only in UCSD Pascal.

On the ATARI Computer/ any file associated with the computer console

is automatically interactive, and therefore this type is not needed

and would only clutter the language unnecessarily.

2. The predefined procedure SEEK is available only in UCSD Pascal.

3. UCSD Pascal uses UNITS to implement modular compilation. They are

easy to understand/ but are much more restrictive than ATARI Pascal's

implementation of modular compilation.

4. UCSD Pascal provides SEGMENT procedures to allow overlays from

diskette. ATARI Pascal will use the standard DOS methods for invoking

overlays.

5. Sets can be considerably larger in UCSD Pascal. They are

considerably faster in ATARI Pascal. The ATARI Pascal implementation

is more in keeping with the spirit of the Jensen and Wirth standard.

6. UCSD Pascal includes bit-level packing on PACKED structures.

Bit-level packing costs in both the size of the interpreter/ and the

speed of execution of the program (particularly on a machine based on

the 6502 microprocessor which does not contain multiply and divide).

7. UCSD Pascal has a construct EXIT <procedure name> that is not

included in ATARI Pascal/ although ATARI Pascal permits EXIT without

the procedure name. Many Pascal purists feel that the construct as

implemented by UCSD is not a structured construct, and is therefore

counter to the philosophy of the language.

8. UCSD Pascal includes the type LONG INTEGER that is not available

in ATARI Pascal.

9. Several features in UCSD Pascal are operating system dependent/

e.g./ long file names, and unit I/O (similar to XIO). These have not

been implemented in ATARI Pascal.

6.2 Additional Features Available with the ATARI Pascal Language

System

1. The ATARI Pascal Language System is a complete ISO standard

Pascal. Some of the ISO features not included in UCSD Pascal are

conformant arra^ handling/ procedures and functions as parameters*

local files, PACK and UNPACK procedures/ READ and WRITE for non-text

files* WRITE and WRITELN of Boolean expressions/ and GOTO out of a

procedure into a surrounding procedure.

2. The Pseudo code implemented in ATARI Pascal was optimized for the

6502 microprocessor.

3. ATARI Pascal uses the same operating system as all other ATARI

programs. ATARI Pascal and ATARI BASIC files are the same format/ and

data files can be read by either language. You do not have the

inconvenience of learning two different and incompatible operating

systems/ as you do with UCSD Pascal. In addition, ATARI Pascal allows

access to I/O in a manner very similar to ATARI BASIC. XIO/ graphics,

sound/ game controllers/ and named devices are all implemented.

4. UCSD segment procedures are limited to six per program which limits

the development of large applications. ATARI Pascal should allow the

development of more complex applications.

5. ATARI Pascal has nine or ten digits of precision on real numbers.

UCSD Pascal has only 6. 5 digits of precision.

6. ATARI Pascal permits the programmer to trap errors, and prevent

programs from aborting.

7. ATARI Pascal provides protection when reading in a string. If the

string is too long for the receiving variable, ATARI Pascal will

truncate the string. UCSD Pascal will overwrite the bytes following

the string in memory, resulting in undefined program errors.

8. ATARI Pascal has extended the CASE statement by adding an ELSE

clause. If the case selecting expression would not result in the

execution of a statement with the CASE, the ELSE clause is executed.

ELSE simplifies error checking. Execution of a similar unmatched

CASE in UCSD Pascal causes an undefined result.

9. Modular compilation is much more flexible in ATARI Pascal. Local

static variables, external procedures and functions located in the

main program, and external global variable usage are all missing from

UCSD Pascal.

10. ATARI Pascal has a built in BYTE data type. This data type

eliminates the use of confusing CASE variant records when manipulating

characters as integers.

11. ATARI Pascal has a built-in WORD data type. An unsigned 16-bit

data type is very useful for address arithmetic and machine-1eve 1

programming.

78

12. UCSD Pascal does not fully implement compatibility between strings

and characters. Strings and characters are totally compatible in

ATARI Pascal.

13. For system dependent applications, ATARI Pascal allou/s relaxation

of type checking rules. This relaxation allows machine I/O and memory

manipulation to be done without cluttering the program with confusing

CASE variant records.

14. ATARI Pascal has the built-in bit-manipulation routines TSTBIT/

SETBITi CLRBITi SHL, and SHR. Bit manipulation in UCSD Pascal must be

done with CASE variant records/ which are confusing and machine

dependent.

15. In both ATARI Pascal and UCSD Pascal, the GET/PUT file I/O is

quite slow. ATARI Pascal also contains GNB and WNB/ which are high-

speed I/O routines for byte I/O.

16. ATARI Pascal fully implements the NEW and DISPOSE procedures/

including fragmentation management and re-use of disposed areas. UCSD

Pascal implements a much more restricted version of these procedures.

This feature is vital to any program doing dynamic data management.

17. ATARI Pascal allows full use of files. UCSD Pascal does not allow

local files/ files in records/ or arrays of files.

18. ATARI Pascal includes the ADDR function. This returns the address

of a variable/ procedure/ or function. This function is useful when

doing machine dependent programming.

19. ATARI Pascal has a built-in INLINE feature that can be used to

generate compile-time constant data. This feature eliminates run—time

initialization of constant tables# increasing execution speed and

decreasing code size.

20. ATARI Pascal allows output in any number base from two through

s i x teen.

21. ATARI Pascal allows input of either decimal or hex numbers.

22. ATARI Pascal has not extended the parameter list on any ISO

standard routine (specifically RESET and REWRITE). For acessing

external files/ a new procedure (ASSIGN) has been added.

79

CHAPTER 7: LANGUAGE DEFINITION

7.I Introduction

Chapter 7 defines the language features of ATARI Pascal that are

common to each implementation of the compiler. It is assumed here that

you are familiar with Jensen and Wirth's "Report" and/or the ISO draft

standard (DPS/7185). The ATARI Pascal features that differ from those

in the ISO standard and in Jensen and Wirth 's "Report"/ are described

by section. In each section/ BNF (Backus Normal Form) syntax is

provided for reference. The complete BNF description of the language

is present in an appendix. Each section corresponds to Wirth's

"Report".

80

7.2 Summary of the ATARI Pascal Language

Features of the ISO Pascal include the data types REAL/ INTEGER/ CHAR/

BOOLEAN/ multidimensional ARRAYS/ user-defined RECORDS/ POINTERS

types/ file variables/ user-defined TYPES and CONSTANTS, and SETS

(implemented in this version with a base type of 256 one byte

elements). ENUMERATED types/ and SUBRANGE types.

Also included in ISO Pascal are PROCEDURES.. FUNCTIONS/ and PROGRAMS.

Passing procedures and functions as parameters to a Pascal routine are

part of the ISO standard., as well as conformant arrays. Arrays of the

same index type and element type but different sizes may be passed to

the same procedure. External parameters with the PROGRAM statement

are supported at the syntax level.

TYPED and TEXT files are supported as defined in the standard using

the Pascal routines RESET, REWRITE/ GET/ PUT/ READ/ WRITE, READLN/ and

WRITELN. The default I/O files INPUT and OUTPUT are defined.

All ISO statements are supported including WITH, REPEAT. .. UNTIL, CASE,

WHILE loops/ FOR loops/ IF. . THEN. . ELSE, and GOTO.

PACK and UNPACK are supported, but do not affect the outcome of the

program (data structures are always packed' at the byte level). NEW

and DISPOSE are implemented; they allocate and deallocate HEAP space.

Modular compilation is an extension of the ATARI compiler. Variables

and routines may be made public and/or private and may be called from

any other module or from the main program.

The extended data types STRING/ BYTE/ and WORD are implemented in the

ATARI Pascal compiler. The STRING type includes a length byte followed

by the maximum number of bytes possible. Routines are supplied to

INSERT a character or a string/ DELETE from a string* find the

POSition of a character in a string, COPY a portion of one string to

another/ and CONCATenate two or more strings and/or characters

together. BYTE is a one-byte data item for representing numbers from 0

to 255. WORD is two bytes for the 8-bit CPU.

Additional procedures to manage files on diskette are implemented. A

file on diskette is associated with an internal file and may be closed

or deleted.

Manipulating BITS and BYTES is done using routines to TEST/ SET/

CLEAR/ SHIFT RIGHT/ and LEFT, return HI or LOW of a variable, and SWAP

the high and low bytes of a variable.

Miscellaneous routines to access items in a program are to return the

address of a variable or routine, return the size of a variable or

type, move a given number of bytes from one memory location to

another and fill a data item with a certain character. Also, the

amount of HEAP space available at any given time is accessible.

Garbage collection on the HEAP is supported.

81

Logical operators for non-Booleans are implemented.

HEX literal numbers may be used with a dollar sign <$>.

Include files are supported.

An ELSE clause on the CASE statement is provided.

Program CHAINING is supported. Chaining is such that the code for one

program is totally replaced by code for the next program, but heap

space may be maintained across a CHAIN.

82

7.3 Notation.. Terminology/ and Vocabulary

CIetter> ::= A

K

U

e

o

y

B

L

V

f

P

z

C

M

W

g

q

D
i
i E

!
1 F 1 ! G ! H ! I i J

N
i
i 0

1
1 P ! * Q ! R ! S T

X
i
i Y

t
1 Z ! a b 1 c ! d

h
i
i i

1
t J 1 k 1 ! m i n

r
i
i s

1
1 t ! u ! i V ! UJ I X

Cdi g i t> 0

A

{ i

{ E ! C

3

D

' 4

! E

5

F

6 i 7 ! 8 ! 9 {

(only allowed in HEX numbers)

<sp ec ia1 symb o1>

!
' <

erved words

* i / ! m

(•) I C

are listed in the appendix)

t

(the following are additional or substitutions:)

\ i ♦ . I i \ i i : i i i w i «

(. is a synonym for C

.) is a synonym for 1

7 and \/ are synonyms

!* and ! are synonyms

Extensions:

The symbol is a legal letter in addition to those listed in the

"Report11. This symbol has been added because the run-time library

routines are written using this special character as the first letter

of their name. By adding MftM conflict with user names is avoided but

users are allowed to call these routines. See section 7.4 for further

informati on.

A comment beginning with "<*" must end with "■*)".

<comment> : : = (* < any characters > *)

i

83

7.4 Identifiers/ IMumbers, and Strings*

<ident i fier> : :

•Cletter or digit> ::

Cdigit sequence)

•Consigned integer> ::

•Cunsigned real)

-Cutis igned number)

•Cscale factor>

•Csign)

<string)

<letter> -CCletter or digit or underscore)}

<letter> I -Cdigit) ! _

<digit> -C-Cdigit)>

$ Cdigit sequence) I

<digit sequence)

<unsigned integer) . <digit sequence) '

•Cunsigned integer) . -Cdigit sequence)

E -Cscale factor) {

^unsigned integer) E Cscale factor)

<unsigned integer \ -Cunsigned real)

•Cunsigned integer) I Cs i g nXuns i g ned integer)
i

'Ccharacter) -C-Cc harac ter)> ' i "

All identifiers are significant to eight characters. External

identifiers are significant to either six or seven characters

depending upon usage. The underscore character (_> is legal between

letters and digits in an identifier and is ignored by the compiler

(i.e. * A_B is equivalent to AB). Identifiers may begin with an n@".

To allow declaration of external run-time routines within a

Pascal program. Users are, in general, advised to avoid the "G"

character to eliminate the chance of conflict with run-time routine

names.

Numbers may be hex as well as decimal. Placing a in front of an

integer number causes it to be interpreted as a hex number by the

compiler. The symbol -Cdigit) now includes: "A"/ "B", "C", "D", "E"

and "F". These may be upper or lower case.

84

7.5 Constant Definitions

<c onstant identifier>

•Ccons tant>

<c onstant defination>

= <identifier>

= ^unsigned number>

<s i gnXuns i gned numb er>

<c onstant i d ent i f i er>

<s ignXconstant identifier>

<str ing>

■ Cidentifier> = <constant>

In addition to all constant declarations available in standard Pascal/

ATARI Pascal supports declaration of a null string constant:

Example:

nullstr m ''i

7.6 Data Type Definitions

Ctype> ::= <simple type>

Cstructured type> !

•Cpointer type>

Ctype definition>::« <identifier> = <type>

7.6. 1 Simple Types

Simple type> : : = <scaiar type> I

<subrange type> !

<t y p e i d en t i f i er>

<type identifier> ::= <identifier>

7. 6. 1. 1 Scalar Types

•Cscalar type> (<identifier <, Ciden t if ier>>)

7.6.1.2 Standard Types

The following types are standard in ATARI Pascal.

INTEGER

REAL

BOOLEAN

CHAR

BYTE

WORD

STRING

Three additional standard types exist in ATARI Pascal. Refer to the

Appendix for information on representation and usage of all standard

and structured types.

STRING : Packed array C 0. . n 1 of char

byte O is dynamic length byte

bytes 1..n are characters

BYTE : Subrange O. . 255 with special attribute that it is compatible

also with CHAR type.

WORD Unsigned native machine word

7. 6. 1. 3 Subrange Types

<subrange type> : : = <constant> <constant>

7.6.2 Structured Types

86

<s truc tured ty p e>

•(."unpacked structured type>

— .r •Cunpacked structured type>

PACKED ^unpacked structured

Carray type> I

Oecord type> !

<set type>

<file type>

ty pe>

i

The reserved word PACKED is detected and handled by the ATARI Pascal

compiler as follows:

All structures are packed at the BYTE level even if the PACKED

reserved word is not found.

7. 6. Array Types

<aTTa*4 type>

<string arra^y

Imax length?-- <

<inconst>

<int const id>

•'.normal avva^y

<index type>

•^component type>

<normal arva^> !

•Cstring arra^y

STRING <max length>

C <intconst> 1 i

<emp ty>

<unsigned integsr> {

<int const id>

<i dent ifier>

ARRAY C Cindex type> {, <index type>>! OF

•^component ty p e>

•Csimple type>

<ty pe >

Variables of type STRING have a default length of 81 bytes (80 data

characters). A different length can be specified in square brackets

following the word STRING. The length must be a constant (either

literal or declared* e.g., STRINGC53 or STRINGCxyz3 (where xyz is a

constant (xyz=10> >. It represents the length of the DATA portion

(i.e, one more byte is actually allocated for the length).

87

7. 6. 2. 2 Record Types

<record type>

•Cfield list>

<

Cfixed part>

."record sec t ion>

•Cvariant part>

•Cvar ian t

<

<:

Ctas

label list>

label>

field>

RECORD Cfield list> END

•Cfixed part>

•Cfixed part> ; <variant part>

•Cvariant part>

•Crecord section> {;<record section>>

•Cfield identifier> -C,<field identif ier»

Ctype> I Cempty>

CASE Ctag field> Ctype identifier> OF

•Cvariant> -C; Cvar ian t>>

Cease label list> :

Cemp ty>

•Cease 1 abe 1 > {# Cease

<<field list>)

label>>

•Cconstant>

Ci dent if ier>

Cemp ty>

7. 6. 2. 3 Set Types

Cset type> ::= SET OF -Chase type>

Cbase type> ::= -Csimple type>

The maximum range of a base type is 0. . 255. For example, a set of

CO. . 100003 is not legal. The set of CHAR or set of 0. . 255 is legal

but set of 0. . 256 is not.

7. 6. 2. 4 File Types

<file type> :: = file -Cof <type>>

Untyped files are allowed. They are used for CHAINING and are also

used with BLOCKREAD and BLOCKWRITE procedures. Be extremely careful

when using untyped files.

When you wish to read a file of ASCII characters and use implied

conversions for integers and real numbers use the pre-defined type

TEXT. TEXT is NOT the same as FILE OF CHAR. It has conversion implied

in READ and WRITE procedure calls and also may be used with READLN and

WRITELN. A file of type TEXT is declared in the following manner: "VAR

F : TEXT". The INCORRECT syntax for declaring a TEXT file is "VAR F :

FILE OF TEXT". See the appendix on Pascal file handling.

7. 6. 3 Pointer Types

•Cpointer type> :: = 'H<type identifier>

Pointer types are identical to the standard except that weak type

checking exists when the RELAXED type checking feature of the compiler

is enabled (the default). In this case> pointers and WORDS used as

pointers are compatible in all cases.

89

7.6.4 Types and Assignment Compatibility

The most common standard Pascal question concerns type conflict

errors messages from the compiler. Types must be identical if the

variable is passed to a VAR parameter. Types must be compatible for

expressions and assignment statements. To understand the difference

between compatible and identical types, think of types as pointers to

compile-time records. If you declare a type (such as T=ARRAY CI. . 103

OF INTEGER)/ then anything declared as type T really points to the

record describing type T. If, on the other hand, you declare two

variables as follows:

VAR

Al : ARRAY CI..103 OF INTEGER/

A2 : ARRAY CI. . 103 OF INTEGER;

they are not identical. The compiler created a new record for each

type and therefore Al and A2 do not point to the same record in memory

at compile-time. The general rule is that if you cannot find your way

back to a type definition, then the types are not identical.

CHR, ORD, and WRD are type converson operators that generate no code

but tell the compiler that the following 8-bit data item is to

be considered type CHAR, INTEGER, or WORD respectively.

These operators may be used in expressions and with parameters except

VAR parameters.

Below is a section from the ISO draft standard (DPS-7185) which is

available from the American National Standards Institute. The ISO

standard definition of compatible types is as follows:

Types Tl and T2 shall be designated compatible if any of the four

statements that follow is true.

(a) Tl and T2 are the same type.

(b) Tl is a subrange of T2 or T2 is a subrange of Tl, or both Tl and

T2 are subranges of the same host type.

<c> Tl and T2 are designated packed or neither Tl nor T2 is

designated packed.

<d) Tl and T2 are string-types* with the same number of components.

...Assignment compatibility. A value of type T2 shall be designated

assignment-compatible with a type Tl if any of the five statements

that follow is true.

(a) Tl and T2 are the same type, that is neither a file-type nor

a structured-type with file component (this rule is to be

interpreted recursively).

(b) Tl is the real-type and T2 is the integer-type.

Cc> Tl and T2 are compatible ordinal-types** and the value of type

T2 is in the closed interval specified by the type Tl.

(d) Tl and T2 are compatible set-types and all the members of the

value of type T2 are in the closed interval specified by the

base-type of Tl.

(e) Tl and T2 are compatible string-types*.

90

At any place where the rule of assignment-compatibility is used:

<a) It shall be an error if TI and T2 are compatible ordinal-types**

and the value of type T2 is not in the closed interval specified

by the type Tt,

(b) It shall be an error if Ti and T2 are compatible set-types and

any member of the value of type T2 is not in the closed interval

specified by the base-type of the type Tl.

* String-types in ISO Pascals are arrays of characters.

■ Ordinal types are named subranges of numbers or enumerations.

7.7 Declaration and Denotations of Variables

<variable> ::= <var> !

•^external var> I

<absolute var>

^external var> ::= <EXTERNAL <var>

absolute var> ::= ABSOLUTE E <constant> 3 <var>

<var> := <entire variable> !

•^component variable> !

Referenced var iab le>

ABSOLUTE variables may be declared if you know the address at compile

time. You declare variable(s) to be absolute using special syntax in

VAR declaration. ABSOLUTE variables are not allocated any space in

your data segment by the compiler and you are responsible for making

sure that no compiler-allocated variables conflict with the absolute

variables. NOTE: STRING VARIABLES MAY NOT EXIST AT LOCATIONS <= $100.

This is done so that the run-time routines can detect the difference

between a string address and a character on the top of the stack.

Characters have the high byte of 0 when present on the stack. After

the colon (:) and before the type of variable(s). you place the

keyword ABSOLUTE followed by the address of the variable in brackets

< C. . 3) :

Examples:

I: ABSOLUTE 11*800 3 INTEGER;

SCREEN: ABSOLUTE C*C0003 ARRAYCO. .153 OF ARRAYCO. . 633 OF CHAR;

91

7.7.1 Entire Variables

Centire variable> : : = <vatiabls identifier)-

•^variable identifier)- ::= <identifier>

7.7.2 Component Variables

•^component variable> : : = Cindexed variable> i

•Cfield designator)- !

•Cfile buffer>

7.7.2.1 Indexed Variables

•Cindexed variable) = <arra\j variable) EXexpression> <, <e x pr ess i on>> 3

Carray variable) : : = <variable>

STRING variables are to be treated as a PACKED arra^ of CHAR for

subscripting purposes. The valid range is 0..max1ength/ where

maxlength is 80 for a default length.

7.7.2.2. Field Designators

•Cfield designator) : : = Oecord variable> . <field identifier>

Crecord variable) : = <Ivariable>

•Cfield identifier> : : = <identifier>

7. 7. 2. 3 File Buffers

Cfile buffer)- : : = <file variable>A

Cfile variable)- ::= <variab 1 e>

7.7.3 Referenced Variables

•^referenced vaviable> :: = <Ipointer variab 1 e>"""

Cpointer variable) ::= <variable>

92

7.8 Express ions

(unsigned constant) ::

<f actor>

•Celement list)

<element>

<term)

(simple expression)

•(expression/

• «

(uns i gned numb er>

•(string)

NIL

•Cconstant identifier)

(variable)

(unsi gned c onstant>

<function designator>

((expression))

(logical NOT operator> <factor)

(set)

C (element list> 3

(element) •€> <e 1 ement)> •

(emp ty)

(expression) I

(expression) .. (expression)

<factor> (multiplying operator> <f ac t or)

<t«rm> I

(simple expression> (adding operator> -(term)!

(adding operator> -(term)

(simple expression) I

(simple expression) (relational operator)

(simple expression)

8u An additional category of operators on 16—bit variables are

(also !>> (also \ and ?) denoting ANDi OR and ONE's complement NOT/

respectively. These have the same precedence as their equivalent

boolean operators and accept any type of operand with a size •(= 2

bytes.

93

7. 8. 1 Operators

7.8.1.1 The Operator NOT

•Clogical NOT operator.^ : : =NOT \ \ \ ?

\ and ? are NOT operators for non-Boolean operators.

7.8.1.2 Multiplying Operators

Multiplying operator:* ::=*{/« DIV i MOD I AND \ &

& is an AND operator on non-Boolean operators.

7. 8. 1. 3 Adding Operators

•Cadding operator> : : = + j - j OR j { { •

! (synonym !> is an OR operator on non-Boolean operators.

7. 8. 1. 4 Relational Operators

-^relational operators> : : = = ! O ! < I <= j >= \ IN

7.8.2 Function Designators

<function designator:* : : = Cfunction identifier:* {

<f unction identifier?.* (<parm> <* <parm»

<function identifier> : := <identifier>

94

7. 9 Statements

statements

<unlabelled statements

<labeiS

::= -ClabelS : <uniabelled statements

<unlabel led statements

: = Csimple statements

<structured statements

::= Cunsigned integers

7. 9. 1 Simple Statements

<s imple statements

< emp ty statements

:= <assigned statements !

■^procedure statements I

<goto statements I

<emp ty statements

:= <emptyS

7.9. 1. 1 Assignment Statements

^'."assignment statements * • <variableS := <expressionS

<function identifiers := ^expressions

To the list of exceptions to assignment compatibility add:

1. Integer expressions may be assigned to variables of type pointer

For example:

TYPE X m RECORD

<* field declarations *)

END;

VAR P : *Xi

I : INTEGER;

P := t+ti

2. Expressions of type CHAR may be assigned to variables of type

STRING.

3. Variables of type CHAR and literal characters may be assigned to

variables of type BYTE.

4. Expressions evaluting to the type WORD may be assigned to pointer

var iab1es.

5. Expressions evaluating to the type INTEGER may be assigned to

variables of type WORD.

7. 9. 1. 2 Procedure Statements

<procedure statement?-* -"."procedure ident if i erS-C CparmS •£/ CparmS>)

<procedure identifiers

•^procedure i d en t i f i er >: : = -Cident i f ier>

•CparmS : = -Cprocedure identifiers

•Cf unction identifier

<expressionS

•Cvar iable>

The maximum number of parameters for a procedure or function is fifty

(50).

7.9.1.3 GOTO Statements

Cgoto statements := goto ClabelS

7.9.2 Structured Statements

•^structured statements- ::= ^repetitive statements

<cond i t ional statement>

Ccomp ound statements

<l\xii th statements

7. 9. 2. 1 Compound Statements

•Ccompound statement:* :: = BEGIN <statementS -C, <statementS> END

7.9.2.2 Conditional Statements

Cconditional statement> = -Cease statement:* I

<if statement>

7.9.2.2.1 If Statements

Cif statement> ::= IF <expressionS THEN CstatementS ELSE ^statements {

IF <expressionS THEN <statementS

7. 9. 2. 2. 2 Case Statements

<case statements ::= CASE CexpressionS OF

<case lists Cease listS>

{ELSE CstatementS>

END
»

•Cease lists : : - <iabel Iist> : -^statements !

<empty>

<label lists : : = -Cease labels {/<case labelS>

•Cease labels : = Cnon-real short scalar constants

ATARI Pascal implements an ELSE clause on the CASE statement. In

addition, if the selecting expression does not match any of the case

96

selectors, the program flow will "drop through" the CASE statement.

The standard says this condition is an error.

Example:

CASE CH OF

'A' : WRITELN('A');

'Q' : WRITELN('Q');

ELSE

WRITELN<'NOT A OR Q')

END

7.9.2.3 Repetitive Statements

•Crepetitive statement> : : = Oepeat statement> !

Cujhile statement> J

<f or statement>

7.9.2.3.1 While Statements

Cwhile statement> := WHILE <expression> DO <statement>

7. 9. 2. 3. 2 Repeat Statements

<repeat statements : ■ REPEAT <statement> <., <statement>> UNTIL

<expression>

7. 9. 2. 3. 3 For Statements

<for statement> ::= FOR <ctrlvar> := <for list> DO <statement>

<for list> := <expression> DOWNTO <expression> I

<expression> TO <expression>

<ctrlvar> := <variafale>

7. 9. 2. 4 With Statements

•Cwith statement:* ::= WITH <TecQTd variable list> DO <statement>

•Crecord variable 1 is t> ::= <record variable> -Crecord var iable>>

Note that the ISO standard differs from Pascal defined by Jensen and

Wirth in that only LOCAL variables are allowed as FOR loop control

variables. This prevents such programming errors as the inadvertent

use of a GLOBAL variable as a FOR control variable when nested five

levels deep.

You're limited to 16 FOR and/or WITH statements in a single

procedure/function. This limitation is so that the compiler can

allocate a fixed number of temporary locations (16 words) in the data

segment for the procedure/function.

97

7.10 Procedure Declarations

<procedure declaration.^

<hloc k>

EXTERNAL ^procedure heading>

•^procedure heading> <block>

<label declaration part>

•^constant definition part>

<type definition part>

■Cvariafale declaration part>

<procfunc declaration part>

statement part> <

^procedure head ing> :* PROCEDURE <identifier> <parmlist>

PROCEDURE <identifier>;

<parmlis t> • < <fparm> -C, <f parm»)

<fparm>

Cparm group>

^conformant arrayy

conarray2>

< i n d x t y p >

<ordtyp id>

<scalar type identifier>

« •

•Cprocedure head ing>

<function head ing>

VAR <parm group>

<parm group>

<identifier> -C, <i d en t i f i er» :

<type identifier>

<ident if ier> -C, <i d en t i f i er>> :

<c on f or man t arvaqZ>

ARRAY C <indxtyp> <;<indxtyp> 1 OF

<conarray2>

< Ctype identifier>

<conformant array>

= <ident if ier>. . Cident if ier> : <Iordtypid>

<scalar type identifier>

,<subrange type identifier>

<ident ifier>

■Csubrange type identifier!:* = <identifier>

<label declaration part> <empty> !

LABEL <label> -C,<label» ;

^constant definition part> : : <empty> \

CONST

•Cconstant def in i t i on>

<} -Cconstant def inition>>

<type definition part> C e m p t y > !

TYPE

<ty p e d ef in i t i on>

<i <type def inition»

98

(variable declaration part>:: <*mpty> !

VAR

<var iab le declaration?*

•C;-Cvar iable declaration>>

(procfunc p a r t > = -C<proc or func> ; >

•Cproc or func> := (procedure declaration>

<function declaration!:*

(statement part> : * (compound statement"*

99

7. 10. 1 Standard Procedures

The following is a list of ATARI Pascal built-in procedures. See

Chapter 3 for parameters and usage. These procedures are pre-declared

in a scope surrounding the program. Therefore/ any user routines of"

the same name will take precedence.

INSERT

FILLCHAR

HI

SHR

POS

MEMAVAIL

NEW

DELETE

MOVELEFT

LO

SWAP

ADDR

SIZEOF

DISPOSE

COPY

MOVERIGHT

SETBIT

TSTBIT

MOVE

EXIT

CONCAT

CLRBIT

SHL

LENGTH

MAXAVAIL

7. 10. 1. 1 File Handling Procedures

All standard file handling procedures are included. In addition the

procedure ASSIGNCF, string) is added where "F" is a file and "string"

is a literal or variable string. ASSIGN assiqns the external file nam*

contained m the string to file F. It is used preceding a RESET or

REWRITE. See Section 3.4.15 for more details.

Listed below are the names of the file handling procedures:

GET

ASSIGN

OPEN

CHAIN

GNB

WRITE

PUT

CLOSE

BLOCKREAD

PAGE

WNB

READLN

RESET

CLOSEDEL

BLOCKWRITE

IORESULT

WRITELN

REWRITE

PURGE

READ

100

7.10.1.2 Dynamic Allocation Procedures

NEW DISPOSE

In addition to NEW and DISPOSE, MEMAVAIL and MAXAVAIL are also

included.

7.10. i.3 Data Transfer Procedures

PACK (A, I,Z> UNPACK <Z,A, I)

7. 10. 2 FORWARD

Forward procedure declarations are implemented in ATARI

recommended that this feature not be used unless strict

conformance is required. The three pass compiler, makes

declarations unnecessary.

Pascal. It is

Pascal

forward

7. 10. 3 CONFORMANT ARRAYS

Note that the ISO standard has added the CONFORMANT ARRAY SCHEMA for

passing arrays of similar structure (i.e./ same number of dimensions,

compatible index type, and same element type), but different upper and

lower bounds. You may now pass, for example, an arrat4 dimensioned as

1. . 10 and an arrai^ 2. .50 to a procedure expecting an arra^. You

define the awa^ as a VAR parameter and in the process of declaring

the arrant you also define variables to hold the upper and lower bound

of the array. These upper and lower bound items are filled in at

RUN—TIME by the generated code. To pass arrays in this manner, the

index type must be compatible with the type of the conformant array

bounds.

Below is an example of passing two arrays to a procedure that

displays the contents of the arrays on the file OUTPUT:

PROGRAM DEMQCON;

TYPE

NATURAL = O. .MAX INT; (*FOR USE IN CONFORMANT ARRAY DECLARATION *)

VAR

Al : ARRAY CI. . 103 OF INTEGER;

A2 : ARRAY C2. . 201 OF INTEGER;

PROCEDURE DISPLAYIT (

VAR AR1 : ARRAY CL0WB0UND3. . HIBOUND:NATURAL! OF INTEGER

);

<* THIS DECLARATION DEFINES THREE VARIABLES:

AR1 : THE PASSED ARRAY

LOWBOUND : THE LOWER BOUND OF AR1 (PASSED AT RUN-TIME)

HIBOUND : THE UPPER BOUND OF AR1 (PASSED AT RUN-TIME)

*}

VAR

I : NATURAL;

C« COMPATIBLE WITH THE INDEX TYPE OF THE CONFORMANT ARRAY *)

BEGIN

FOR I :* LOWBOUND TO HIBOUND DO

WR ITELN ('INPUT ARRAY C I, '3=', AR 1 C I D)

END;

BEGIN (■* MAIN PROGRAM *)

DISPLAYITCAl) ; (* CALL DISPLAYIT AND PASS Al EXPLICITLY AND

1 AND 10 IMPLICITLY *)

102

^ DISPLAYITCA2> (* CALL DISPLAYIT AND PASS A2 EXPLICITLY AND

2 AND 20 IMPLICITLY *>

END.

103

7. 11 Function Declarations

<function decl> ::= EXTERNAL ^function heading> i

<function heading> <block>

•Cfunction heading>::= FUNCTION <i d en t i f i er Xparml i s t>: Cresu 11 type>;

FUNCTION <identifier> : Oesult type> ;

Cresult type> = <type identifier.*

7. 11. 1 Standard Functions

Listed below are the names of the standard functions supported

ABS

EXP

ODD

WRD

EOLN

MAXAVAIL

LENGTH

SGR

LN

TRUNC

CHR

EOF

ADDR

SIN

SORT

ROUND

SUCC

IORESULT

SIZEOF

COS

ARCTAN

ORD

PRED

MEMAVAIL

POS

7. 11. 1. 1 Ar i thmet i c Func t ions

7. 11. 1.2 Pred i cates

7. 11.1.3 Transfer Functions

WRD(x) : The value x (a variable or expression) is treated as the WORD

(unsigned integer) value of x. Integer literal constants are not of

type WORD. Therefore, if W is of type word, W:=3 is illegal, and you

must use W : = WRD(3).

7.11.1.4 Further Standard Functions

File handling: <F is a file variable. See files in appendix.)

PUT(F) GET < F) RESET(F) REWRITE(F) PAGE(F) EOF(F) EOLN(F)

Dynamic Allocation: (Tn is a variant record selector, P is a pointer)

NEW(P) NEWvP,Tl,T2,...,Tn) DISPOSE(P) DISPOSE(P,Tl, T2, Tn)

Data Transfer Procedures: (See page 106 of Jensen and Wirth for a more

complete description.)

PACK (A, I, Z) UNPACK (Z, A, I)

Arithmetic functions

104

ABS(X) OR AES(I) - special returns the type of its argument

SQR(X) OR SQR(I) - if passed integer returns integer, etc.

Transfer functions: (SC is a non-real short scalar)

Implemented at compile-time and generate no code:

ODD(SC) : BOOLEAN ORD(SC) : INTEGER CHR(SC) : CHAR WRD(SC) : WORD

Implemented at run-time and do generate code:

SUCC(<any scalar type except real>) PRED(<any scalar type except

rea1>>

7. 12 INPUT AND OUTPUT

ATARI Pascal supports all standard Pascal I/O facilities.

7. 12. 1 THE PROCEDURE READ

Reading into subranges is implemented but no range checking is

performed/ even u/ith range checking turned on.

7. 12. 2 THE PROCEDURE READLN

Oead ca 1 i> Read or readln> < (<<filevar> , > «var 1 i s t>>)>

Oead or readln>::= READ ! READLN

<filevar: > = Cvariable>

<var1ist> <variable> -i, <variable>>

7. 12. 3 THE PROCEDURE WRITE

7. 12. 4 THE PROCEDURE WRITELN

<uir i t eca 11> ::=<write or writeln> < < <<filevar> , > <e x pr 1 i s t > > >

<write or writeln> = WRITE I WRITELN

<expr1ist>

<wexpr>

<width expr>

<dec expr>

::= <wexpr> {,<wexpr>>

: : = <e xpress ion> -C:<width exp> <:<dec expr>>>

:= <expression>

--.expressions

To write integers u/ith a base other than ten use a negative decimal

place field specifier.

For example:

WRITE*J: 15:-16)

<* this writes I in HEX*)

You may not use functions that perform input or output as a parameter

to a WRITE or WRITELN statement. These include access routines such as

GNB. The file pointers become modified by the reading routines/

causing the output to be done to the input file.

7. 12. 5 ADDITIONAL PROCEDURES

See Section 7. 10. 1. 1

WORD input and output is not performed with the standard READ and

WRITE procedures. Two new procedures are READHEX and WRITEHEX. These

106

new procedures allow Hex I/O on variables of any one-/ two-/ or

four-byte type such as integer, char/ byte subrange/ enumerated/ word/

and long integer. See the section in Chapter 3. 4 on ATARI Pascal

extensions.

7. 13 PROGRAMS

<program> ::= <program heading> <block> . I

<module head ing>

Clabel declaration part>

•Cconstant definition part>

<type definition part>

-.variable declaration part>

Cprocfunc declaration part>

MODEND .

Cprogram heading> PROGRAM <identifier> (Cprog parms>) ;

•Gnodule heading> ::= MODULE <identifier> i

<prog parms> :: = <identifier> -C, <ident if ier>>

The above is identical to the standard with the addition of modules/

Refer to Chapter 3.

108

APPENDIX A:

<ietter) ::

LANGUAGE SYNTAX DESCRIPTION

A [B i c

K i i L
t
i fi

U
!
1 w

e ! f
1
1 g

o ! 1 P
1
f

y ! E z
1
t

D
i
i E F j ! 0 1 H

i
! I

1
t J

N
t
i □

t
t P \ Q \ R

1
1 s

!
1 T

X
t
i Y < Z 1 ! a ! b

1
1 c

1
1 d

h
i
t i J ! k 1 ! I

1
1 m

1
1 n

r
i
i s

i
• t i u 1 ! Y

f
1

1
! X

<d i g i t> 0

A

1

B

i 2

: c

! 3 ! 4 ■

D

5

! F

! 9 6 i 7 ! 8

(only allowed in HEX numbers)

<special symbol> {reserved words are listed in appendix B>

! - ! * ! /
i

= ! o : <
i % i
i i

o !>=!(!)
i
i t t a ! --■

i
i

MM*
•

f 1 1
t 1 / t

i
•

i / i
i i

■Cthe following ar k6 add itional or substitutions:

(. « \ * \ *
t / i *. e -> •

i
i

i i i i tt
:ii i 1 <K 1

(.

! ,

is a synonym for C

is a synonym for 3

and *? are synonyms

and ! are synonyms

<identifier)

•Cletter or d ig i t>

<digit sequence>

•^unsigned integer> :

•Cunsigned real>

•Cletter) -C-Cletter or digit or unscore»

•Cletter) I -Cdigit) ! _

<digit) -CCdigit)>

$ <digit sequence> i

<d ig it sequence)

•Cunsigned integer) .

<unsigned integer) .

E Cscale factor)

•Cunsigned integer)- E Cscale factor)

■Cd ig it sequence)

•Cdigit sequence)

•Cunsigned number)

•Cscale factor)

•Csign)

•Cs tr ing)

•Cc onstant identifier)

■Cc ons tan t)

= <unsigned integer) ! Cunsigned real)

= -Cunsigned integer) I <signXunsigned integer)

= + i -

' < Icharacter) -C-Cc harac t er)> ' \ te

:= Cidentifier)

:= -Cunsigned number)

•Cs i gnXuns i gned number)

109

<c on s tant i d ent i f i er?>

<si gn.Xconstant identifier?*

-.string >

Constant definition?-- : : = <identifier> = <c on s tan t?--

<ty p e> = Csimple type?*

•Cstructured type>

•Cpointer type>

•Ctype definition> = -Cident if ier?- « <type

< .simple type>
• *

<scalar type>

<subrange type>

•Ctype identifier >

•Ctype identifier> :: = <identifier>

•Cscalar type> : : = (<i d en t i f i er> <i d en t i f i er>>)

•Subrange type> ::= <constant> .. <constant>

< structured type> <unpacked structured type>

PACKED <unpacked structured type>

Cunpacked structured type> :: •Carray type>

<record type>

•Cset type>

•Cfile type>

•Carray type>

•Cstring arrayy

< max length>

<ineonst>

-Cnormal arva^y \

•Cstring arra^>

STRIf^O Cmax length>

C <inconst> 3 !

•Cemp ty >

•Cunsigned integer?-- !

<int const id?>

•Cint const id> •Cidentif ier>

•Cnormal avra^y ::= ARRAY C Cindex type> {, Cindex type>>3 OF

•Ccomponent type>

•Cindex type?-- •Csimpie type?:-

•Ccomponent type> :: = Ctype?-

Cr ecord type> ::= RECORD Cfield list> END

•Cfield list? : = <fi xed psrt>

<fixed part> •Cvariant part> {

110

•Cvariant p a r t >

<f ixed part> = -Crecord section> {/ <record section>>

<r ecord sect ion> •Cfield identified -C,-Cfield identifier!^

■Cemp ty>

•Ctg p e>!

<variant part> CASE Ctag field> Ctype identified OF

<variant> <iCvariant>>

< variant' = < case label list

•Cemp t u >

<<field list>>

label list>::= <case label> {,<case label>>

•Cease label := Cconstant>

<tag field> : «P <identif ier> : I

^mp ty>

Cset type> SET OF <base type>

•Cbase type> •Csimple type>

•Cfile type> = file -Cof Ctype>>

•Cvar iab le> Cvar>

<external var>

•Cab so lute var>

•Cexternal var> EXTERNAL Cvar>

•Cab so lute var> ABSOLUTE C <c on stand 3 Cvad

<var> ■ Centire variable>

^"component var iab le>

Referenced variable." >

Declaration of variable of type STRING:

•Cidentified -C, <i d en t i f i er » : STRING -CC<constant>l>

•Cent ire var iab 1 e> ::= <variable identifier>

•Cvariable identif ier> = <identif ier>

•Ccomponent var iab le> •Cind e x ed var iab 1 e>

<field designator >

•Cfile buffer>

Cindexed var iable> :: = -Carray variable?-- CCexpression> <, Ce x p r es s i on>> 1

•Carray var iab1e> := Cvar iab1e>

111

(field designator!:- :: = <record variable> . <field identifier)

Cvecord varisbIe> <var iab1e>

<f i e1d i d en t i f i er) = (identifier)

(file buffer) = (file variables

(file variable> := <variable>

•(referenced variable>: : = (pointer variable:*

(pointer variable^ = <vaviable>

[unsigned c onstant> <unsigned number>

(str ing)

NIL

<C onstant i dent i f i er>

(fac tor) <variable)

•(unsigned constant)

•Cf unc t ion designator)

((expression))

■(logical not operator) (factor)

<se t)

<set) = C (element list) 1

(element list) (element) •€# (element)>

(emp ty)

(element) < Cexpression)

(expression) . . (expression)

Iterm) <factor) '(multiplying operator) <factor)

(simple expression) (term)

(s imp 1e

(a d d i n g

expression) (a d d i n g

op era tor) -(term)

operator) <term)«

(expression) ::= (simple expression)

(simple expression) (relational operator)

(simple expression)

(logical not operator) ::= NOT ! \ ! ?

\ and ? is are NOT operators for non-Booleans

(multiplying operator) ::=*!/« DIV ! MOD ! AND ! &

& is an AND operator on non-Booleans.

(adding operator) ::=•+•{-! OR ! ! I 1
t !

112

! (synonym !) is an OR operator on non-Booieans

Crelational operators?.* :: = \ > I ?*= \ IN

•Cfunct ion designator?* •^function identifier?-* !

Cfunction identifier> (<parm?* {-*Cparm>)

•^function identifier"* = < identifier?*

<statement> <label> : Cunlabelled statement^

•Cunlabel led statement>

•Cunlabelled statement?*: : = Csimple statement>

< structured staternent>

•Gafael > = <unsigned integer?-*

<s imp1e s ta t ernen t?* '^assignment statement?*

•^procedure statement>

<goto statement>

<emp ty statement?*

< Cemp ty statement?* empty>

^assignment statement?*: : = <variable> : = <e xpress ion?*

<f unction ident i f ier?* <ex press ion?*

•^procedure statement?* : : = ^procedure identifier?* (<parm?* </ <parm»)!

< procedure identifier?*

-^procedure i den t i f ier>: : = <i d en t i f i er>

<.parm> : ■ ^procedure identifier?*

•Cfunct ion ident i f ier?*

<expression?*

<variab1e>

<g o to statement?* = goto < 1 a b e 1 ?*

•^structured statement?*: : •-.repetitive statement?*

<c onditional statement?*

<c omp ound statement?*

<wi th statement?*

<c omp ound statement?* BEGIN <Istatement> {, <s ta t emen t?*> END

<c ond i t i ona1 statement?* <case statement?*

<if statement?*

<if statement?* IF <expression?* THEN <s tat emen t?*

IF <e xpression> THEN ^statement?*

ELSE Cs tat emen t?* \

113

•Cease statement^ :: = CASE <expression> OF

<case list> {, -Cease Iist>>

{ELSE <statement>>

END

■Cease list :> :« -Ciabel 1ist>

Cemp ty>

Cstatement>

■Ciabel list> : = -Cease label> -C. Cease label>>

•Crepetitive statement> ::= Crepeat statement>

Cu/h i 1 e s tatement>

<for statement:*-

•Cwhile statement?-* WHILE <expression> DO <Istatement>

•Crepeat s tat emen t> = REPEAT Cstatement> <statement» UNTIL

•Ce xpress ion>

•Cfor statement> ::= FOR <ctrlvar> Cfor list> DO Cstatement>

•Cfor list>

<ctrlvar

■ <expression> DOWNTO Cexpression>

<expression> TO Cexpression>

= <variable>

•Cu/ith statement:* : : = WITH Crecord variable list> DO <statement>

•Crecord variable list> :: = -Crecord variable> </<record variable

procedure declaration:* EXTERNAL Cprocedure heading> \

•Cprocedure heading> <block>

•Cb loc k>

•Cprocedure heading^

= -Ciabel declaration part>

•Cconstant definition part>

,-Ctype definition part>

Cvariable declaration part>

<procfunc declaration part>

<statement part>

PROCEDURE -Cidentif ier> Cparmlist>

PROCEDURE -Cident i f ier> ;

PROCEDURE INTERRUPT C <Iconstant> 1 i

•Cparmlist>

•Cf parm>

<.parm group

■ (<fparm> -C,<fparm>>)

= Cprocedure head ing>

<function head ing>

VAR Cparm group>

•Cparm group>

= Cidentif ier> <j <i d en t i f i er »

<type identifi er>

Cc onformant arrays

<conarray2>

'Cidentif ier> -C, <i d en t i f i er>> :

•Cc on forma nt array>

ARRAY C <indxtyp> -C > Cind x t y p } 1 OF

Cconarray2>

<t y p e i d en t i f i er >

<conformant arrayy

< i n d x t y p >

•Cord typ id>

Clabel declaration part>

Cidentifier> •Cidentif ier> : Cordtypid>

•Cscalar type ident ifier>

Csubrange type identifier>

•Cconstant definition part> :

•Ctype definition part>

•Cvariabie declaration part>:

<empty> I

LABEL <label> <,<label>> ;

<empty> i

CONST

•Cconstant definition>

<i Cconstant definition>

<empty> I

TYPE

•Ctype definition.

<;<type definition>> ;

<empty> !

VAR

<variable declaration>

<ind xtyp>

■Cor d t y p i d>

•Clabel declaration part.">

•Cconstant definition part>

<type definition part>

•Cvariafale declaration part>:

•Cidentif ier>. . Cidentifimr>

-Cscalar type identifier> I

•Csubrange type identifier?*

•Cempty> '

LABEL <label> •C, Clabel>> ;

•Cempty> !

CONST

•Cconstant definition>

<i Cconstant def in i t i on»;

C empty?-- i

TYPE

•Ctype def inition>

<;<type definition» ;

Cordtyp id?:

< empty> !

VAR

•Cvar i ab le declaration >

<} Cvariable declaration^}

115

<pr oc func part> = {<proc or func> ; >

Cproc or func> <procedure declaration^

<function declaration!:-

Cstatement part>

•Cfunction decl>

:: = <compound statements-

::= EXTERNAL Cfunction heading> \

•Cfunction heading> Cblock>

function heading>::= FUNCTION <identifierXparmlist>: Cresu1t type>; i

FUNCTION Cidentifier> : Cresult type> ;

•Cresult type>

•Creadcal 1>

:= -Ctype identifier>

:= <read or read 1n> << <<filevar> , > {<var1ist>>)>

•Cread or readln> = READ ! READLN

•Cf ilevar> : = -Cvar iab le>

•Cvar 1ist> -Cvar iab Ie> <i -Cvar iab le>>

•Cwr i tecal1> ::=Cujrite or writeln> -C (<<Ifilevar> /> -Cexprlist>)>

<write or writeln> ::= WRITE ! WRITELN

<expr1ist>

•duexpr>

Cuiidth expr>

<dec expr>

•Cprogram>

m <wexpr> {,<wexpT>

= <expression> -C:<uiidth expr> -C.Cdec expr>>>

= <expression>

= --.expression.--

= <program heading> <block> .

•Cmod u le heading>

•Clabel declaration part>

•Cconstant definition part!

•Ctype definition part>

•Cvariable declaration part>

<procfunc declaration part>

MODEND .

>

•Cprog ram h ead ing>

•Cmodule head ing>

•Cprog parms>

PROGRAM Cidentifier> (Cprog parm>) /

= MODULE -Cidentifier> ;

= -Ci d en t i f i er> <, <i d ent i f i er>>

116

APPENDIX B: RESERVED WORDS

The following are the i m «■* I ▼ %— — iiin"pH^ in ATAR T w — i "J — Alt n i n I \ x r a a L a JL

AND DOWNTO GOTH UN 1 IL

ARRAY ELSE IF OF REPEAT VAR

BEGIN END IN OR SET WHILE

CONST FILE LABEL PACKED THEN WITH

CASE FOR MOD PROCEDURE TO

DO FUNCTION NIL PROGRAM TYPE

ATARI Pascal also has extended reserved words:

ABSOLUTE EXTERNAL PREDEFINED

APPENDIX C: ERROR MESSAGES

Recursion stack overflow: evalution stack collision with symbol table;

correct by reducing symbol table size* simplifying expressions.

1: Error is simple type

Self-explanatory.

2: Identifier expected

Self-explanatory.

'PROGRAM ' expected

Self-explanatory.

4: ')' expected

Se1f-e x planatory.

5: ':' expected

Possibly an = used in a VAR declaration.

6: Illegal symbol (possibly missing '; ' on line above)

Symbol encountered is not allowed in the syntax at this point

7: Error in parameter list

Syntactic error in parameter list declaration.

8: 'OF' expected

Self-explanatory.

9: 'I ' expected

Self-explanatory.

10: ETTOT in type

Syntactic error in TYPE declaration.

11: 'C' exp ec ted

Se1f-e xplanatory.

12: ' 1' expected

Self-explanatory.

13: 'END' expected

All procedures/ functions# and blocks of statements must have an

'END'. Check for mismatched BEGIN/ENDs.

14: 'J ' expected (possibly on line above)

Statement separator required here.

15: Integer expected

Self-explanatory.

16: '=' expected

Possibly a : used in a TYPE or CONST declaration.

e

118

17: fBEGIN ' expected

Self-explanatory.

IS: Error in declaration part

Typically an illegal backward reference to a type in a pointer

declaration.

19: Error in <field-list>

Syntactic error in a record declaration

20: '> ' expected

Se1f-ex planatory .

21: '*' expected

Self-explanatory.

50: Error in constant

Syntactic error in a literal constant

51: ': =' expected

Self-explanatory.

52: 'THEN" expected

Se1f-e x planatory.

53: 'UNTIL' expected

Can result from mismatched begin/end sequences.

54: 'DO' expected

Syntactic error.

55: 'TO' or 'DOWNTQ' expected in FOR statement

Self-explanatory.

56: 'IF' expected

Self-explanatory.

57: 'FILE' expected

Probably an error in a TYPE declaration.

58: Error in <factor> (bad expression)

Syntactic error in expression at factor level.

59: Error in variable

Syntactic error in expression at variable level.

99: MODEND expected

Each MODULE must end u/ith MODEND.

101: Identifier declared twice

Name already in visible symbol table.

102: Low bound exceeds high bound

For subrange the lower bound must be <> high

119

103: Identifier is not of the appropriate class

A variable name used as a type/ or a type used

as a variable, etc. can cause this error.

104: Undeclared identifier

The specified identifier is not in the visible symbol table.

105: Sign not allowed

Signs are not allowed on non-integer/non-real constants.

106: Number expected

This error can often come from making the compiler totally

confused in an expression as it checks for numbers after all

other possibilities have been exhausted.

107: Incompatible subrange types

(e.g. 'A7.. 'Z' is not compatible with 0. .9).

File not allowed here

File comparison and assignment is not allowed.

109. Type must- not be real

Self-explanatory.

110: <tagfield> type must be scalar or subrange

Self-explanatory.

Ill: Incompatible with <tagfield> part

Selector in a CASE-variant record is not compatible with the

<tagfield> type.

112: Index type must not be real

An array may not be declared with real dimensions

113: Index type must be a scalar or a subrange

Self-explanatory.

114: Base type must not be real

Base type of a set may be scalar or subrange.

115: Base type must be scalar or a subrange

Self-explanatory.

116: Error in type of standard procedure parameter

Self-ex planatory.

117: Unsatisified forward reference

A forwardly declared pointer was never defined

118: Forward reference type identifier in variable declaration

You attempted to declare a variable as a pointer to a type n

yet declared.

119: Re-specified parameters not OK for a forward declared procedure

Self-explanatory.

120: Function result type must be scalar, subrange or pointer

A function has been declared with a string or other non-scalar

type as its value. This is not allowed.

121: File value parameter not allowed

Files must be passed as VAR parameters.

122: A forward declared function's result type can't be re-specified

Self-explanatory.

123: hissing result type in function declaration

Self-explanatory.

125: Error in type of standard procedure parameter

This error is often caused by not having the parameters in the

proper order for built—in procedures or by attempting to

read/write pointers/ enumerated types, etc.

126: Number of parameters does not agree with declaration

Self-explanatory.

127: Illegal parameter substitution

Type of parameter does not exactly match the corresponding formal

parameter.

128: Result type does not agree with declaration

When assigning types to a function result, the types must be

compatible.

129: Type conflict of operands

Self-explanatory.

130: Expression is not of set type

Self-explanatory.

131: Tests on equality allowed

Occurs when comparing set for other than equality.

133: File comparison not allowed

File control blocks may not be compared because they contain

multiple fields unavailable to the user.

134: Illegal type or operand(s)

The operands do not match those required for this operator.

135: Type of operand must be Bool ean

The operands to AND, OR and NOT must be BOOLEAN.

136: Set element type must be scalar or subrange

Self-explanatory.

137: Set element types must be compatiafale

Self-explanatory.

138: Type of variable is not array

A subscript has been specified on a non-array var iable.

139: Index type is not compatible with the declaration

Occurs when indexing into an arra^ with the wrong type of

indexing expression.

140: Type of variable is not record

Attempting to access a non-record data structure with the 'dot7

form or the 'with7 statement.

141: Type of variable must be file or pointer

Occurs when an up arrow follows a variable which is not of type

pointer or file.

142: Illegal parameter solution

Self-explanatory.

143: Illegal type of loop control variable

Loop control variables may be only local non-real scalars.

144: Illegal type of expression

The expression used as a selecting expression in a CASE statement

must be a non-real scalar.

145: Type conflict

Case selector is not the same type as the selecting expression.

146: Assignment of files not allowed

Self-explanatory.

147: Label type incompatible with selecting expression

Case selector is not the same type as the selecting expression.

148: Subrange bounds must be scalar

Self-explanatory.

149: Index type must be integer

Self-explanatory.

150: Assignment to standard function is not allowed

Self-explanatory.

151: Assignment to formal function is not allowed

Self-explanatory.

152. No such field in this record

Self-explanatory.

153: Type error in read

Self-explanatory.

122

154: Actual parameter must be a variable

Occurs when attempting to pass an expression as a VAR parameter

155: Control variable cannot be formal or non-local

The control variable in a FOR loop must be LOCAL.

156: Multidefined case label

Se1f-e x planatory.

157: Too many cases in case statement

Occurs when jump table generated for case overflows its bounds.

158: No such variant in this record

Self-explanatory.

159: Real or string tagfields not allowed

SeIf-explanatory.

160: Previous declaration was not forward

161: Again forward declared

162: Parameter size must be constant

163: hissing variant in declaration

Occurs when using NEW/DISPOSE and a variant does not exist.

164: Substitution of standard procedure/function not allowed

165: Multidefined label

Label more than one statement with same label.

166: Multideclared label

Declare same label more than once.

167: Undeclared label

Label on statement has not been declared.

168: Undefined Label

A declared label was not used to label a statement.

169: Error in base set

170: Value parameter expected

171: Standard file was re-declared

172. Undeclared external file

174: Pascal function or procedure expected

Self-explanatory.

183: External declaration not allowed at this nesting level

Self-explanatory.

187: Attempt to open library unsuccessful

Self-explanatory.

191: No private files

Files may not be declared other than in the GLOBAL variable

section of a program or module because they must be statically

allocated.

193: Not enough room for this operation

Self-explanatory.

194: Comment must appear at top of program

201: Error in real number - digit expected

Self-explanatory.

202: String constant must not exceed source line

203: Integer constant exceeds range

Range on integer constants are -32768. . . 32767

250: Too many scopes of nested identifiers

There is a limit of 15 nesting levels at compi1e-time.

This includes WITH and procedure nesting.

251: Too many nested procedures or functions

There is a limit of 15 nesting levels at execution time.

253: Procedure too long

A procedure has generated code that has overflowed the internal

procedure buffer. Reduce the size of the procedure and try again.

259: Expression too complicated

Your expression is too complicated (i.e. too many recursive

calls needed to compile it). Reduce the complication using

temp orary variable.

397: Too many FOR or WITH statements in a procedure

Only 16 FOR and/or WITH statements are allowed in a single

procedure (in recursive mode only)

400: Illegal character in text

A non-Pascal special character was found outside a quoted string.

401: Unexpected end of input

ffEnd. " encountered before returning to outer level.

402: Error in writing code file, not enough room

Self-explanatory.

403: Error in reading include file

Se1f-e xplanatory.

124

404: Error in writing list file/ not enough room

Self-explanatory.

405: Call not allowed in separate procedure

Seif-explanatory.

406: Include file not legal

Self-explanatory.

407: Symbol Table Overflow

497: Error in closing code file.

An error occured when the . ERL file was closed.

Make mere room on the destination diskette and try again.

500: A non-standard feature has been used when the T+ or W+ toggles

are enabled. This is a non-fatal information-only error.

APPENDIX D: ATARI PASCAL FILE I/O

The sections in this appendix describe ATARI Pascal files and how to

use them. Since working from an example will be the most effective

way of describing these concepts/ program examples have been included

for each area of file handling.

o The first section defines the terms used/ such as "file/"

"window variable/" and "TEXT."

o The second section shows how to use all the file operation

procedures with examples. These include ASSIGN/ RESET/ REWRITE/

sequential file access procedures/ CLOSE/ etc.

o The third section defines Pascal TEXT files. Sample programs

demonstrate the use of built-in Boolean functions EOLN and EOLF/

READLN/ WRITELN/ formatted 1/0/ and writing to the printer.

o The fourth section presents some less frequently used file

operations.

126

1. DEFINITIONS

The terms and definitions included here are arranged to logically

discuss the concepts of files as you read through.

FILE

A file is data arranged in logical.' equal-sized elements very much

like an open-ended arra^ accessed via a pointer. The size and

arrangement of the data is controlled by your program. A file is

generally stored on a secondary storage medium. For the purpose of

this documentation/ secondary storage is assumed to be a diskette. You

may write data to a file or read data from a file using the file

operation procedures provided with ATARI Pascal. This data in the file

may be accessed sequentially (record 1 accessed before record 2..

record 2 is accessed before record 3/ etc)/ or directly.

FILENAME

The filename is the name of the file on diskette. It is the name

displayed in the directory listing of the storage medium. In ATARI

Pascal the filename is represented in a program by a STRING (a dynamic

sequence of ASCII characters). For example/ "D2: TEST. PAS" is the

filename in literal string format for the file located on drive "D2"

with the name of "TEST" and the extension of ".PAS".

TYPE

The type of file defines the size and format of the individual file

elements/ the smallest accessible units of a file. For example/ a file

of type INTEGER (2 8-bytes) may be visualized as:

+ + + + + + +

!00001000 I 00000000 i00100001!00000001!00000001!00000000!

+ + + + + + +

{ record 0 I record 1 ! record 2 \

This file contains the integers 8/33/and 1 (stored inverted in this

sample). The smallest retrievable element is two bytes. See the

explanations of untyped files or byte files it you want to treat this

file differently than a file of integers. Files may be of the standard

Pascal scalar types: BOOLEAN/ INTEGER/ CHAR, or REAL. Files may also

be of the structured types STRING/ arrays/ and records. The predefined

type TEXT is used for ASCII files. Text files are similiar to FILE of

CHAR except that they are subdivided into lines, and numbers written

to them are converted to ASCII (and may be -formatted)/ and numbers

read from them are converted to binary. A line is a sequence of

characters terminated by an end-of-line character/ which is usually a

carriage return/line feed. Also, unlike FILE of CHAR/ TEXT files will

accept PACKED ARRAYC1. . N 3 OF CHAR or ARRAY CI. . N 3 OF CHAR (writing an

UNPACKED ARRAY is not ISO standard)/ and STRINGS as data. A Boolean

value is converted to the ASCII sequence "TRUE" or "FALSE" on write

but the reverse is not true. For further explanations on typed and

text files/ see the operations section.

A non-ISO standard concept regarding files is the UNTYPED file. This

concept is used for fast block input and output (entire sectors are

read or written) regardless of the kind of data contained in the file.

FILE INFORMATION BLOCK (FIB)

The FIB contains information necessary for the run-time routines to

perform file operations on a disk file. The filename/ the type of the

file, the access type (read or write), end-of-file and end-of-line

flags, and a diskette buffer (the size of one diskette sector) are

among the kinds of information kept in the FIB.

WINDOW VARIABLE OR WINDOW POINTER

The window variable is a buffer the size of a file element and is

located just past the FIB in ATARI Pascal. A way to think of it is

that it moves along the file and acts as a 'window' to the element of

the file to be read or written. For this reason, it is considered a

pointer to the file element being accessed. It is denoted as *F'A"

where "F" is the name of a file variable. To read from a file, the

element which is accessible is moved to the window variable. To write

to a file, the data must be transferred from the window variable to

the file.

FILE VARIABLE

The file variable consists of a FIB and a window variable. It is the

actual data item allocated by the compiler and referenced in a Pascal

program. An example will clarify what a file variable is, as well as

what the FIB and window variable are. The statement, "VAR F : FILE

OF INTEGER;" causes the compiler to create a file variable F with its

own FIB in the data area and its own window variable (2 bytes) to hold

a 16-bit integer. The window variable is denoted by F'\ Suppose "I" is

an integer in the same program and has the value 2. Suppose also that

the file already contains the value 1 in the first element as below:

+ + + + { + +

'OOOOOOOlI00000000! i i { «

+ + + + + + +

i FIB ! 1000000101000000001 window variable
+ + +

To write the contents of I to the file, the window variable must

contain 2 (R* := I puts the contents of I into the window variable)

and be "positioned" over the second element of the file. Given the

command PUT(F) described in the operations section, the number 2 is

written to the file.

123

2. FUNDAMENTAL FILE OPERATIONS

Sample programs and explanations demonstrate the use of file operation

procedures in ATARI Pascal. You will see how to open/ create/ read/

write/ delete/ and close files. Demonstrated also are the use of typed

and text files; the file status functions IORESULT/ EOF/ and EOLN; and

how to assign to a window variable.

Figure D-l lists a program named WRITE_READ_FILE_DEMG that creates a

typed file on diskette., writes data to the file/ closes the file/ then

re-opens the file to read the data back. The procedures used to

perform these are ASSIGN/ REWRITE/ RESET, IORESULT/ PUT/ GET/ and

CLOSE. WRITE is used to display the results on the terminal. The

output work is done in WRITEFILE and the input work is done in

READFILE. Creating/ opening/ and closing the file is done in the main

body of the program.

The WRITELN statements on lines 37, 43/ 46, and 49 write the string

passed to them to the default OUTPUT file (the console). This

procedure and READLN are discussed later in this section under TEXT

files.

First note the form of the declaration of OUTFILE. It is declared to .

be of type CHFILE, which is defined as a FILE OF CHAR in the TYPE

declaration section (lines 3 and 4). This is done because the file is

passed as a parameter to the WRITEFILE and READFILE routines and a

parameter list cannot declare a new type. For example, the following

parameter declaraction is illegal in Pascal because only type

identifiers are allowed in a parameter list:

PROCEDURE WRITEFILE(VAR F : FILE OF CHAR);

1 0 PROGRAM WRITE READ FILE DEMO; Mm MM

3 O TYPE

4 1 CHFILE = FILE OF CHAR;

5 1 VAR

6 1 OUTFILE : CHFILE;

7 1 RESULT : INTEGER;

8 1 FILENAME: STRINGC16 3;

9 1

10 1 PROCEDURE WRITEFILE(VAR F : CHFILE);

11 1 VAR CH: CHAR;

12 2 BEGIN

13 2 FOR CH:= 'O' TO '9' DO

14 2 BEGIN

15 3 F'x : = CH; (*CHR(I + ORD('O ')); * >

16 3 PUT(F)

17 3 END;

18 2 END;

19 1

20 1 PROCEDURE READFILE(VAR F : CHFILE);

21 1 VAR I : INTEGER;

22 2 CH : CHAR;

P3 2

C *T

2 RFC IN

26 3 CH ' = F"%-;

27 3 GET C F)s

28 3 WRITELN(CH);

no 3 END;

30 END;

—> X

3P RFC TN

33 ■~j •_/ FT! FNAMF • = 'TFCT HAT / .

34
-

ASSIGN (OUTFIL F. FT! FNAMF) ;

35 W/ NaT REWRITE(OUTFILF >;

36
-

IF I0RESULT = <> 0 THEN

37 WR ITELNf 'Error creatine! '.FILENAME)

ELSE mmmmm hmmmm ■« low-

39 BEGIN

40 2 WRITEFILE(OUTFILE)i

41 2 CLOSE(OUTFILEi RESULT);

42 2 IF RESULT = O 0 THEN

43 2 WR I TELN ('Frrnr rlosinn '.FT! FNAMF \

ELC.E 44 2 mm

45 2 RFC T N

46 3 URTTF! N(* /cliirrp«c;f ill r1n«;<» n-P ' FT! FlNJAMF \ i

47 w

48 3 IF I0RESULT = <:> 0 THEN

49 3 WRITELN('Cannot open '-FILENAME)

50 3 ELSE

51 3 READFILE(OUTFILE)

52 3 END*

53 2 END;

54 1 END.

Figure D-l: File Input and Output.

130

PROCEDURE ASSIGNCVAR F: FILE VARIABLE;STR : STRING);

Purpose: Associate the file variable F with an external file on

diskette named in STR.

ASSIGN is the first file operation to be executed in line 34. This

procedure associates a file variable (OUTFILE) with an external file

on a diskette given in FILENAME (in this case it is "TEST. DAT">. The

string passed to ASSIGN is placed into the FIB and the name is

interpreted. After executing the ASSIGN procedure/ the file variable

passed to the ASSIGN procedure is always associated with the diskette

file named in the name parameter until* or unless/ another ASSIGN is

done to the file variable.

PROCEDURE REWRITECVAR F : FILE VARIABLE);

Purpose: Create a file on diskette using the name in the FIB (either

filled in by the ASSIGN statement previously or null (if null/ a

temporary file is created.).

The REWRITE procedure is called in line 35 of Figure D-l. Executing

this procedure causes the creation of a file with the name contained

in the FIB of F. Any existing files by that name are deleted so

NEVER use REWRITE on a file which contains usable data. In this

example/ the file on diskette will be named "TEST. DAT" and is located

on the default diskette (because no other diskette was specified in

the file name string passed to ASSIGN).

If no previous ASSIGN had been performed/ the name field of the FIB is

empty and a temporary file is created with the name "PASTMPOO. "

Temporary files are generally used for scratch pad memory and data

which is not needed after execution of the program. The digits at the

last two positions in the name are used to give each temporary file a

unique name.

The EOF function and the EOLN function return true because OUTFILE is

an output file. OUTFILE is open only for writing sequentially and is

ready to receive data into its first element. If the operation is not

successful/ the IORESULT function returns a non zero in this case (see

line 36).

FUNCTION IORESULT : INTEGER;

Purpose : Return the integer value indicating status of file

operation.

The value of this function is set after any input or output operation

and may be checked at any time. Note in Figure D-l it is called after

each file operation in lines 36/ 42/ and 46. It is used here to stop

the program if a file operation did not work as planned. Note that you.

cannot "WRITE(IORESULT)" because IORESULT is reset to O after each I/O

operation. The meaning of the values returned by IORESULT is presented

in Chapter 3.

131

PROCEDURE PUTCVAR F : FILE VARIABLE);

Purpose : Transfer the contents of the window variable associated with

F to the next available record in the file.

Procedure WRITEFILE, beginning on line 9 of Figure D-l, writes the

characters "O" to "9" to the TEST. DAT file. The PUT procedure causes

the data to be written to the file. Always before executing a PUT, an

assignment is made to the window variable as in line 15. Following is

a diagram of what is occurring:

+ «+•

1001100001 Window variable after

+ ■ + to 'O'.

+ + + +

assignment (line 15) and CH is equal

+ + + + +

File before any PUT statement is executed.

+ +

100110000! Window variable after PUT

■+• +

in line 16.

+~ + +-

100110000,' {

+ ■ + -+--

File after the first

lines 13 through 17.

PUT is executed in the

—+-

FOR loop in Figure D-l

PROCEDURE WRITE;

PRODEDURE WRITE(expression, . . . ,expression);

PROCEDURE WRITE(VAR F:FILE VARIABLE,expression, e xpress ion);

Purpose : Shorthand for 'F* data; PUT(F);' also performs

conversions to ASCII on numbers when F is a TEXT file.

Expression includes contents of variables, strings, array elements,

constants, and expressions. When a file variable is not specified,

the default OUTPUT file is assumed. The WRITE procedure does the same

operations on the file as lines 15 and 16. It executes an assignment

followed by a PUT and is merely a shorthand version. GET and PUT are

provided because the ISO standard requires them and in some versions

of Pascal, such as UCSD Pascal, WRITE can only be used on TEXT files.

PROCEDURE CLOSECVAR F : FILE VARIABLE; RESULT : INTEGER);

Purpose : Flush the buffer

written to the diskette.

in the FIB associated with F so all data is

The next

line 41,

that the

Up until

now must

statement to be executed after returning from WRITEFILE is

where the file is closed. CLOSE must be executed to assure

data written to "TEST. DAT" is actually saved on the diskette,

this point the data is written to the buffer in memory and

be saved by flushing the buffer. RESULT is the value returned

132

by the Operating System indicating whether the close is successful. It

is included as a parameter to maintain compatibility with previous

versions of the compiler. In this program a value of non zero means an

error closing the file/ and any other value indicates success.

PROCEDURE RESET(VAR F : FILE VARIABLE);

Purpose : Open an existing file for reading. The window variable is

moved to the beginning of the file.

After checking RESULT/ the procedure RESET is called in line 47.

RESET opens an existing file for reading and resets the window

variable to the beginning of the file. F^ is assigned the first

element of F. If F is already open, RESET calls CLOSE. EOF and EOLN

return FALSE. If a RESET is done on a file that does not exist/

IORESULT contains a non zero. All other values of IORESULT indicate

success. In the sample program/ OUTFILE is opened by the RESET

procedure so that it may be read. Below is a diagram of the file and

window variable after the RESET is executed in line 47. Note that with

non-computer console typed files/ such as OUTFILE/ the procedure RESET

does an initial GET/ which moves the first element of the file (in

this case the ASCII value for the number 0) into the window variable.

«

+ +

1001100001 Window variable (OUTFILE""') after RESET (line 47).

+ +

+ + + + + + +

100110000 100110001 I 00110010100110011 I 00110100 I 00110101!. . . .

+ + + + + + +

The initial GET is not performed on console files or untyped files.

You would always have to type a character before your program could

execute/ because the GET procedure is waiting for a character.

PROCEDURE GET(VAR F : FILE VARIABLE);

Purpose : Transfer the currently accessible record to the window

variable and advance the window variable.

After checking that the RESET procedure is successful/ procedure

READFILE is called in line 51. This procedure reads each element of

the file passed to it (in this case the element is a character) and

writes that element to the screen. READFILE begins on line 20. The

work is done in the FOR loop of lines 24 through 29.

The GET procedure advances the window variable by one element and

moves the contents of the file pointed to into the window variable.

If no next element exists/ EOF becomes TRUE. See Section 3 on TEXT

files for more details on GET and TEXT files. The diagram below

describes what is happening within the FOR loop on lines 26 and 27 the

first time through the loop.

1001100001 Window variable (OUTFILE) after line 26

~*~ + + + 4- + +

I 001lOOOOI 00110001 J 00110010 I 00110011 I 00110100 I 00110101 I . . .

+ 4. + + ■ + + +

After executing line 26, CH contains the ASCII for O (00110000).

After executing line 27/ the window variable is advanced.

+ +

\00110001 I Window variable after GET in line 27.

* +

+ + + + •+■-—— + ■ +

100110000100110001100110010100110011!00110100i00110101i

+ + + >+ +„, 4. +

Line 2S writes the contents of CH to the default output file which is

the computer console. Procedure READFILE displays the characters "0"

through ,l9" in a column on the computer console. Calling CLOSE after a

RESET is not necessary in the sequential case, because the file

already exists on the diskette and has not been altered in any way. If

OUTFILE is accessed randomly, a CLOSE might be necessary.

PROCEDURE READ<data, data, . . . ,data);

PROCEDURE READ<VAR F : FILE VARIABLE , data, data, data);

Purpose: When used with non-computer console files execute "data :=

F*v; GET(F);" for each data item read. When used with computer console

files, execute "GET(F>; data :=F'\". If F is not specified the default

INPUT file is used. See the section on TEXT files for information on

conversions.

The READ procedure is the same as an assignment and a call to GET. If

READ is used rather than GET in the current example, the FOR loop body

would look like this:

FOR I : = O TO 9 DO

BEGIN

READ(CH);

WRITELN(CH)

END;

Reading past end-of-file on computer console input results in a system

crash.

134

3. TEXT FILES

DEFINITION

A TEXT file is a file of ASCII characters subdivided into lines. A

line is a sequence of characters terminated by a nonprintable

end-of-line indicator* usually a carriage return and a line feed

character. It is similar to a file of CHAR except that automatic

conversion of numbers is performed when they are read from and written

to the file. Also/ variables of type STRING may be read from a text

file and BOOLEANs/ STRINGS/ and PACKED ARRAYs may be written to text

files. Access to a TEXT file is via GET and PUT for character I/O

(which do not do conversions)/ READ and WRITE/ which have been defined

earlier in this section/ and READLN and WRITELN/ which are used in

Figure D-2 and defined in this section.

The format of a TEXT file in memory is a FIB and a 1-byte window

variable. On diskette/ the file looks like the sample below in which a

carriage return is represented by ">"/ linefeed by "/" and end of file

by "

+ +

This is a line>/This is the next line>/This is the last line>/#

+ +

FUNCTION EOLN : BOOLEAN;

FUNCTION EOLN(VAR F : TEXT) BOOLEAN;

Purpose: Indicate the state of the file be returning true only when

the window variable is over the end-of-line character. When no file is

specified the default INPUT file is assumed.

This function returns true on diskette text files when the last valid

character on a line is read using a READ statement. Because the

sequence of statements for a READ (on non-computer console files)

is "CH := F'*i GET(F)# M# the window variable is positioned over the

end-of-line character immediately after the last character is read.

Thus, EOLN returns TRUE on NON-COMPUTER CONSOLE TEXT files when the

last character is read . Also/ a BLANK character is returned instead

of the end-of-line character. The above sequence is reversed on

computer CONSOLE files (READ is an initial call to GET followed by an

assignment from the window variable). When you use computer CONSOLE

files* EOLN will return true after the carriage return / line feed is

read instead of after the last character as in disk files. A blank is

still returned in the character.

FUNCTION EOF;

FUNCTION EOF(VAR F : FILE) : BOOLEAN;

Purpose: Indicate the state of a file by returning true only when the

window variable is over an end-of-file character. When no file is

specified/ the default INPUT file is assumed.

EOF is a function that returns true when the end-of-file character is

read. It is similar to EQLN in that the last character read will set

EOF to true on NON-COMPUTER CONSOLE files. On computer CONSOLE files

EOF is true only when the end-of-file indicator is entered. Reading

past end-of-file on computer console files is not supported (the

system can crash). Reading past the end of the file on diskette files

is not supported. A blank is returned by the window variable when EOF

is true. Also, note that on non-text files, EOF may not become true at

the end of the valid data because the data may not fill up the entire

last sector of the file.

Figure D-2 is a program that writes data to a text file and reads it

back to be displayed on the output device. The procedure WRITEDATA

actually writes to the TEXT file and the procedure READDATA retrieves

the information stored in the file. The program is divided into a main

body and two procedures to demonstrate the usefulness of breaking up

code into blocks that perform certain functions. This method makes

code much easier to read and debug.

The file is declared in line 3. Note that the declaration is NOT

"VAR F : FILE of TEXT". TEXT is treated as a special version of FILE

of CHAR, so FILE of TEXT translates to FILE of FILE of CHAR

(nonsensical).

The program begins execution on line 25 with a call to the ASSIGN

procedure. Lines 25 through 29 create a TEXT file named TEXT. TST on

the logged-in drive. If the file creation is successful, then the

sample data is initialized in lines 31 and 32, followed by a call to

the WRITEDATA routine in line 33. WRITEDATA uses the WRITELN

procedure, which is only used with TEXT files.

PROCEDURE WRITE;

PROCEDURE WRITELN;

PROCEDURE WRITELN(e xpr, expr, . . . expr);

PROCEDURE WRITELN(F);

PROCEDURE WRITELN(F, expr,expr, . . . expr);

Purpose: Put the data into the file associated with F, ending the

output with an end-of-line character. If no file is specified the

expressions are written to the OUTPUT file. A WRITELN with no

expressions merely outputs a carriage return / line feed. The WRITE

procedure is redefined as a conversion rather than a replacement for

PUT.

This procedure writes the data passed to it to the file named, placing

an end-of-line character after the last item of data written. If no

file is named, the file is written to the default OUTPUT file. Data

may be literal and named constants, integers, reals, subranges,

enumerated, Boo leans, strings, and packed arrays of characters, but

may not be structured types such as records. Numeric data is converted

to ASCII and strings are treated as arrays of characters (the length

byte is not written to the file).

136

Formatted Output

In Figure D-2 three lines that make up the body of WRITEDATA (9/ 10,

and 11) do the actual file output. Line 9 sends the contents of the

variable string S followed by a carriage return / line feed to the

TEXT file F. Line 10 formats the contents of I in a field of four

spaces and sends this formatted output to the file F. The real number

literal in line 11 is formatted into a field of nine spaces, four of

which must be to the right of the decimal place. This formatted number

is then written to the file F. The field format may be specified for

any data type. For non-real numbers only the field width is specified,

not the number of places after the decimal point. The data is right

justified in the field. If a number is larger than the 6.5 significant

digits can represent, the output is always expressed in exponental

notation. Also, if the field width is too small to express the number

it is written in exponential notation. For further information on

formatting consult a Pascal textbook and experiment.

The body of the WRITEDATA procedure could have been written as follows

with the same results.

WRITELN<FJ8>I

WRITELN(F,I:4, 45.6789 : 9 : 4);

Control returns to the main body of the program and line 34 is

executed. If the CLOSE is successful, the RESET in line 39 opens the

file F (which is still associated with "TEXT. TST" on the diskette),

moving the window variable to the beginning in preparation for reading

data from the file F. Following a successful RESET, the procedure

READDATA is called to read back the information placed in "TEXT.TST"

and display it at the computer console.

S ta t emen t Nest Source Statement

1 0 PROGRAM TEXT10 DEMO;

2 0

3 0 VAR F : TEXT; • • * lean r * * »

4 I : INTEGER;

5

I

S : STRING;

o

7 I
PROCEDURE WRITEDATA;

8 I BEGIN

9 2 WRITELN(F,S);

10 2 WRITECF/ 1:4);

11 2 WR ITELN (Ff 45. 6789* 9 4);

12 2 END;

13 1

14 1 PROCEDURE READDATA;

15 1 VAR R REAL;

16 2 BEGIN

17 READLN<F#S);

18 2 READ<F, I);

19 2 READCF,R);

20 2 WRITELN(S);

21 2 WR ITELN (1: 4, ' R: 9: 4);
* k

<=: END;

T3
(3.W

24 BEGIN

25 I
ASSION<F, 'TEXT TST ');

26 REWRITE(F);

27 IF I0RESULT O 0 THEN

28

29

WRITELN('Error creatinq')

ELSE

30 I
BEGIN

31 2 I : = 35;

32 2 S := 'THIS IS A STRING';

33 2 WRITEDATA;

34 2 CLOSE(F, I);

35 2 IF I0RESULT O 0 THEN ■ cJU W I ■ MM W T««# Ml I mmmr III MM • *

36 2 WRITELN('Error closina ')

37 2 ELSE

38 2 BEGIN

39 3 RESET(F >;

40 3 IF I0RESULT <> 0 THEN

41 3 WRITELN('Error ooenina

ELSE 42 3

43 3 READDATA;

44 3 END;

45 2 END;

46 1 END.

46 0

46 0 Normal End of Input Reached

Figure D-2 Text Files

138

PROCEDURE READ;

PROCEDURE READLN;

PROCEDURE READLN (F) ;

PROCEDURE READLN(F, variable/ variable* . . . ,variable)i

Purpose: Read from the file associated with F into the variables

listed. In all cases* read until an end-of-line character is found/

skipping any unread data/ and advance to the beginning of the next

line. READ is redefined to perform conversion of reals/ Booleans/ and

integ ers.

READLN/ like WRITELN/ has as parameters an optional file variable and

any number of variables to receive the data from the file. If the file

variable is not specified/ input is taken from the default INPUT file/

the keyboard. The variables in the parameter list are the same type as

the data being read from the file. However, no type checking is done#

so it is up to you to construct a parameter1ist compatible with the

format of your file. Any numbers are converted on input but the

formatting is lost. Numbers must be separated from each other and

other data types by a blank or a carriage return line feed.

READLN recognizes but does not transmit the end-of-line character. The

action is to read data until it encounters an end—of—line and

character. The action is to read data until it encounters an

end-of-line and advance the window variable to the beginning of the

next line. The data in "TEXT. TST" looks like the following:

THIS IS A STRING>/

35 45.6789>/#

After reading the string in the first line to read the integer 35/ you

must use READ and not READLN. If a READLN were used here/ the 35 would

be read properly because the first blank terminates the number.

However/ the window variable would be advanced past the real number to

the end of the file. Then/ if you try to read the real/ all one gets

is EOF/ and then you wonder what happened to the real number known to

be out there.

STRINGS must always be read with a READLN because they are terminated

with end-of-line characters. If the data to the file had been 'THIS

IS A STRING 35>/'i the value returned for S would be the entire line/

including the ASCII 35.

Lines 20 and 21 write the data to the computer console in the same

format as it is contained in the file.

After executing READDATA/ the program is finished. A CLOSE is not

necessary because the data in "TEXT. TST" is not altered in any way

since the last CLOSE on that file.

139

Writing to the Printer

Writing to the printer is very simple,, as demonstrated in Figure D-3

A file variable is declared to be of type TEXT as in line 5 of Figure

D-3. This file variable is ASSIGNed to the printer in line 11. The

filename 'P: passed to ASSIGN means that F is to be associated with

the list device so that all data written to F is routed to the

printer. REWRITE is called to open the list device for writing. Note

that a CLOSE is not necessary since the data has already been written

and the buffer does not need to be flushed. Lines 23 and 25 use

standard Pascal formatting directives. In line 23. R is to

m a field s even characters long; with three digits to the

e. the dec imal p lac

Statement Nest Source Statement

■»
i

r\
U PROGRAM PRINTER;

"a n
u

k *WRITE D«TA AND TEXT TO THE PRINTER
*

A
*T u

I i * n
VAR

D F : TEXT;
f
O

* I : INTEGER;

7 1 S : STRING;
o
o

1 R : REAL;
o
V

10 BEGIN

11 ASSIGN<F, 'P:

12 REWRITE(F);

13 IF IORESULT O 0 THEN

14 WRITELN('Error rewriting file')

15 ELSE

16 BEGIN

17 S := 'THIS LINE IS A STRING';

18 2 I : m 55;

19 2 R : * 3. 141563;

20 2 WRITE<F,S);

21 WRITE(F/I);

22 2 WRITELN(F);

23 2 WRITELN(F/R:7:3);

24 2 WRITE(F/ I, R);

25 WRITE(Fi I: 4, R:7:3);

26 c WRITELN(F);

27 2 WRITELN(F, 'THIS IS THE END. ')

28 2 END

2? 0 END.

29 0

29 0 Normal End of Input Reached

Figure D-3 Writing to a Printer and Number Formatting

140

4. MISCELLANEOUS FILE ROUTINES

A sample program is not provided for the following routines.

PROCEDURE OPEN (F: FILE VARIABLE, TITLE STRING; VAR RESULT

INTEGER);

Purpose : Identical to the sequence 'ASSIGN(F,TITLE) ; RESET(F);

PROCEDURE CLOSEDEL (F : FILE VARIABLE; VAR RESULT : INTEGER);

Purpose : Close file F and delete it. Used with temporary files.

Exactly the same as CLOSE followed by PURGE.

PROCEDURE PURGE (F : FILE VARIABLE);

Purpose : Delete the file associated with F from the Diskette. An

ASSIGN must be executed sometime before the call to PURGE so that the

file control block for F contains the name of the file to be deleted.

On some operating systemsi the file may be required to be closed

before this procedure can function properly. In this case CLOSEDEL is

a useful procedure.

APPENDIX E: BIBLIOGRAPHY

Grogono, Peter, Programming in Pascal , Addison-Wes1ey, Reading,

Massachusetts, 1978.

A good introduction for seif-teaching.

Wilson, I. R, and Addyman, A. M, A Practical Introduction to Pascal

Springei—Verlag, New York, 1979. ' " '

An advanced textbook

Jensen, Katheleen, and Wirth, Niklaus, Pascal User Manual and

Report , Springei—Verla, New York, 1974.

First definition of Pascal. Best used as a reference document.

"Draft Proposal ISO/DP 7185; Programming Languages-Pascal"

Not designed for the novice. A precise language definition.

May be obtained from American National Standards Institute,

International Sales Department,

1430 Broadway

New York, New York 10018

Findley, William, and Watt, David A., PASCAL: An Introduction to

Methodical Programming , Computer Science Press, Potomac, Marylan

1978.

Conway, Richard, Gries, David, Zimmerman, E. Carl, A Primer on

Pascal Winthrop Publishers, Cambridge, Massachusetts, 1976.

Miller, Alan R. , Pascal Programs for Scientists and Engineers

Sybex, Inc. , Berkeley, CA. , 1981.

De Re Atari, "A Guide to Effective Programming", APX-90008

ATARI 400/800 Disk Operating System II Reference Manual, C016347

ATARI 400/800 BASIC Reference Manual, C015307

APPENDIX F: Player/Missi1e Demo Program

The Player/Missile Demo program may be entered using the ATARI

Program-Text Editor and used as an example for modular compilation and

use of the built-in graphics and sound procedures. Compile each of the

modules separately (PMDEMO, PMMIS, PEEKPOKE, PMSND). Then link these

modules together along with the Graphics and Sound Library (GRSND).

When the linker responds with the asterisk repond with the following:

D2:PMDEMO# D2:PMMIS, D2:PMSND, D2:PEEKPOKE,GRSND,PASLIB/S

Once linked together you may execute the program using the "Run"

command. A joystick is required to move the player and fire the

missile.

PROGRAM PLAYER/MISSILE (INPUT,OUTPUT);

C*

This program, written in Pascal, demonstrates the player/missile

capabilities of ATARI Pascal. It is based on the player/missi1e

demonstration program written in BASIC. Error checking has been

implemented so that the player does not cause system crashes when it

goes off the screen. The player is held just off the visible screen

until the input from the joystick changes its position to a point on

the visible screen. In addition a visible missile mill be fired when

the button on the joystick is pressed. Also implemented are sounds

associated with the movement of both the player and the missile.

Four modules must be compiled separately and then linked together to

form the executable object file. These modules include PMSOUND

<D2:PMSND. PAS), PEEKPQKECD2: PEEKPOKE. PAS), PMMISSILE<D2:PMMIS. PAS) and

program player/missi1e (D2:PMDEMO. PAS).

The executable file is D2:PMDEMO. COM and can be run by typing "R" in

the Pascal monitor. A joystick is required for program execution.

The player will respond to the joystick by moving vertically,

horizontally, and diagonally. The missile is fired by pressing the

button on the joystick. Both the player and the missile may be moving

simultaneously.

*)

TYPE

SCRN_TYPE=(FULL_SCREEN, SPLIT-SCREEN);

CLEAR_TYPE=(CLEAR_SCREEN, DQ_NOT_CLEAR_SCREEN);

VAR

PMBASE, (*PLAYER-MISSILE BASE ADDRESS*)

X, <*PLAYER AND MISSILE HORIZONTAL POSITION*)

Yi <*PLAYER VERTICAL POSITION*)

MISY, (*MISSILE VERTICAL POSITION*)

A:INTEGER;

FIRED:BOOLEAN; (*FLAG SET TO TRUE WHEN MISSILE FIRED, RESET WHEN

MISSILE HAS MOVED OFF THE TOP OF THE SCREEN*)

EXTERNAL PROCEDURE INITGRAPHICS<MAX_MODE: INTEGER) ;

EXTERNAL PROCEDURE GRAPHICS(MODE: INTEGER;SCREEN:SCRN_TYPE; CLEAR :

CLEAR_TYPE);

EXTERNAL PROCEDURE SETCOLOR(REGISTER,HUE,LUMINANCE:INTEGER);

EXTERNAL PROCEDURE SOUND<VOICE,PITCH,DISTORTION, VOLUME: INTEGER);

EXTERNAL FUNCTION STICK(STKNUM:INTEGER):INTEGER;

EXTERNAL FUNCTION STRIG(STKNUM:INTEGER):INTEGER;

EXTERNAL PROCEDURE MAKENOISE; <*IN MODULE PMSOUND*)

144

EXTERNAL PROCEDURE BIGBANG; (*IN MODULE PMMISSILE*)

EXTERNAL PROCEDURE MOVEMISSILE; <*IN MODULE PMMISSILE*)

EXTERNAL PROCEDURE POKEBYTE<ADDR*VAL: INTEGER); (*IN MODULE PEEKPOKE*)

EXTERNAL FUNCTION PEEKBYTE<ADDR: INTEGER): INTEGER; <*IN MODULE

PEEKPOKE*)

PROCEDURE SETPLAYER;

<*SETPLAYER initializes the player by first clearing out the player's

section of memory and then initializing that memory with the proper

values so that the player takes on the shape printed below. *)

VAR I:INTEGER;

BEGIN

<*CLEAR PLAYER AREA IN MEMORY*)

FOR I:=PMBASE+512 TO PMBASE+640 DO POKEBYTE(I * 0);

P0KEBYTE<704, 108); <*5ET PLAYER COLOR TO PURPLE*)

(♦INITIALIZE PLAYER AREA WITH MISSILE SIZE, SHAPE*)

I:=PMBASE+512+Y;

POKEBYTEt IV153) i (*PLAYER WILL LOOK LIKE THIS: *)

I:

POKEBYTE(Ii189); (* *)

I: =1 + 1; (* *)

POKEBYTE<I/255); (* *)

I: =1 + 1; <* *)

POKEBYTE(I, 189); (* *)

POKEBYTE <I / 153)

END;

PROCEDURE MOVERIGHT;

(*MOVERIGHT moves the player to the right on the screen by

incrementing the player's horizontal position register.*)

BEGIN

IF X<214 THEN BEGIN <*MOVE RIGHT ONE COLOR CLOCK*)

X:=X+1; (*INCREMENT*)

(*POKE NEW VALUE INTO HORIZONTAL POSITION REGISTER*)

POKEBYTE (53248/X)

END (*ELSE HOLD STILL, JUST OFFSCREEN AT RIGHT:)

END;

PROCEDURE MOVELEFT;

(*MOVELEFT moves the player to the left on the screen by decrementing

the player's horizontal position register.*)

BEGIN

IF X>40 THEN BEGIN (*MOVE LEFT ONE COLOR CLOCK*)

X:=X-1; (*DECREMENT*)

(*POKE NEW VALUE INTO HORIZONTAL POSITION REGISTER*)

POKEBYTE(53248/ X)

END (*ELSE HOLD STILL, JUST OFFSCREEN AT LEFT*)

END;

145

PROCEDURE MOVEUP;

<*MOVEUP moves the player up on the screen by moving the player up in

the player's memory area.*)

VAR X:INTEGER;

BEGIN

IF Y>1 THEN BEGIN (*MOVE PLAYER UP ONE UNIT IN MEMORY AND ON

SCREEN*)

FOR I:=0 TO 6 DO POKEBYTE(PMBASE+511+Y+1,

PEEKBYTE(PMBASE+512+Y+I)>i

Y:=Y-1 (*PLAYER HAS MOVED UP ONE UNIT*)

END (*ELSE HOLD STILL, JUST OFFSCREEN AT TOP OF SCREEN*)

END;

PROCEDURE MOVEDOWN;

<*MOVEDOWN moves the player down on the screen by moving the player

down in the player's memory area.*)

VAR I:INTEGER;

BEGIN

IF Y<120 THEN BEGIN

<*MOVE PLAYER DOWN ONE UNIT ON SCREEN AND IN MEMORY*)

FOR I:=6 DOWNTO 0 DO P0KEEYTE(PMBASE+512+Y+I, PEEKBYTE

(PMBASE+511+Y+I)>;

Y:=Y+1 (*PLAYER HAS MOVED DOWN ONE UNIT*)

END <*ELSE HOLD STILL, JUST OFFSCREEN AT BOTTOM OF SCREEN*)

END;

BEGIN <*MAIN PROGRAM*)

INITGRAPHICS(O);

GRAPHICS(0,FULL_SCREEN_, CLEAR_SCREEN); (*CLEAR SCREEN*)

POKEBYTE<755,1); (*POKE OUT CURSOR*)

SETC0L0R<2, 0, 0); (*SET BACKGROUND COLOR TO BLACK*)

X:=120; (*SET HORIZONTAL COORDINATE OF PLAYER*)

Y:=4S; (*SET VERTICAL COORDINATE OF PLAYER*)

A:=PEEKBYTE(106)-8;

POKEBYTE<54279,A);(*SET PLAYER-MISSILE ADDRESS BASE REGISTER*)

PMBASE:=256*A; (*SET PLAYER-MISSILE ADDRESS*)

POKEBYTE(559,46); (*SET DMACTL IN OS SHADOW*)

POKEBYTE(53277,3); (*SET GRACTL—ENABLE PLAYER AND MISSILE DMA TO

PLAYER AND MISSILE GRAPHICS REGISTERS*)

POKEBYTE<53248,X); (*SET PLAYER HORIZONTAL POSITION*)

SETPLAYER; (*CLEAR AND SET PLAYER-MISSILE MEMORY AREA*)

(* NOW FOR THE MOVEMENT AND MISSILE FIRING *)

FIRED:=FALSE; ^INITIALIZE "FIRED" FLAG*)

WHILE 4>2 DO BEGIN

A:=STICK(0);

IF AO 15 THEN MAKENOISE; (*GENERATE MOVEMENT SOUND*)

(*MOVEMENT*)

IF A=5 THEN BEGIN

MOVERIGHT;

MOVEDOWN

END ELSE IF A=6 THEN BEGIN

MOVERIGHT;

MOVEUP

146

*

END ELSE IF A=7 THEN MOVERIGHT

ELSE IF A=9 THEN BEGIN

MOVELEFTi

MOVEDOWN

END ELSE IF A=10 THEN BEGIN

MOVELEFT;

MOVEUP

END ELSE IF A*11 THEN MOVELEFT

ELSE IF A=13 THEN MOVEDOWN

ELSE IF A=14 THEN MOVEUP

ELSE IF A=15 THEN SOUND(0/ 182/2/ 0);

<*PLAYER IS STANDING STILL, SO MAKES NO SOUNDS*)

IF FIRED THEN MOVEMISSILE (^CONTINUE MISSILE ON ITS TRAJECTORY*)

ELSE IF STRIG(0)=0 THEN BIGBANG; <*FIRE MISSILE*)

END; <*WHILE*)

END.

147

MODULE PMMISSILEi

(*Tive routines in this module handle the firing and flight of the

missile for the p1ayer/missi1e graphics demonstration program.*)

VAR PMBASE, X,Y, MISY:EXTERNAL INTEGER;

FIRED:EXTERNAL BOOLEAN;

EXTERNAL FUNCTION PEEKBYTE(ADDR : INTEGER): INTEGER;

EXTERNAL PROCEDURE POKEBYTE<ADDR, VAL: INTEGER>;

EXTERNAL PROCEDURE SOUND(VOICE, PITCH,DISTORTION, VOLUME: INTEGER);

PROCEDURE MOVEMISSILE;

(*Movemissi ie is called by procedure bigbang u/hen the missile is

first fired, and later by the main program as the missile continues

its trajectory. The main program calls movemissile until the missile

has moved off the top edge of the screen and the "fired11 flag has been

reset. *>

VAR I:INTEGER;

BEGIN

IF MISY>5 THEN BEGIN

FOR I:=0 TO 1 DO POKEBYTE(PMBASE-K383+MISY+I,PEEKBYTE(PMBASE+384+

MISY+I));

(*MQVE MISSILE UP IN MISSILE MEMORY*)

MISY:=MISY-1 (*MISSILE HAS MOVED UP ONE*)

END;

IF MISYOS THEN FIRED:=FALSE (*MISSILE HAS MOVED OFF THE TOP EDGE

OF THE SCREEN, SO RESET THE "FIRED"

FLAG*)

END;

PROCEDURE BIGBANG;

(*Bigbang is called whenever the user presses the fire button on the

joystick. Bigbang launches the missile and starts it on its

trajectory.*)

VAR I: INTEGER;

BEGIN

FOR I:=PMBASE+384 TO PMBASE+512 DO POKEBYTE(1, 0) ;

(*CLEAR MISSILE AREA IN MEMORY*)

S0UND(3,46,12,14); (*FIRE!! (BEGIN FIRING NOISE)*)

POKEBYTE(53260,0); (*SET NORMAL MISSILE SIZE*)

POKEBYTE(53252, X+3);

(*SET MISSILE HORIZONTAL POSITION EQUAL TO PLAYER HORIZONTAL

POSITION*)

MISY:=Y-1; (*SET MISSILE VERTICAL POSITION EQUAL TO THE POINT JUST

ABOVE PLAYER VERTICAL POSITION*)

I: =PMBASE+384+MISY;

POKEBYTE(1,3); (*SET MISSILE SHAPE IN MEMORY*)

FIRED:=TRUE; (*SET MISSILE FIRED FLAG TO SHOW THAT A MISSILE HAS

BEEN FIRED*)

148

1

MOVEMISSILE; (*START MISSILE ON ITS TRAJECTORY*)

SOUND(3,46,12,O) <*STOP THE FIRING SOUND*)

END;

MODEND.

149

MODULE PMSOUND*

<*This module contains procedure makenoise, u*hich controls the sound

generation for the player's movement. This procedure was put into its

own module. *)

EXTERNAL PROCEDURE SOUND(VOICE,PITCH,DISTORTION,VOLUME:INTEGER);

PROCEDURE MAKENOISE;

(♦GENERATE ENGINE SOUND WHEN PLAYER MOVES *)

BEGIN

SOUND (0, 182, 2, 6)

END;

MODEND.

150

MODULE PEEKFOKE;

(*This module contains procedures for performing BASIC style PEEKs

and POKEs. *)

PROCEDURE POKEBYTE(ADDR< VAL: INTEGER);

(*

POKEBYTE: BASIC STYLE OF MEMORY LOCATIONS

POKEBYTE PROVIDES A METHOD, SIMILAR TO THE BASIC POKE, FOR THE

PASCAL USER TO SET MEMORY LOCATIONS.

ENTRY: POKEBYTE(ADDR, VAL); (SAMPLE CALL)

ADDR = ADDRESS TO EE POKED

VAL = VALUE TO BE POKED INTO ADDRESS

EXIT: CONTENTS OF ADDR IS NOW VAL

CHANGES: ADDR (ADDRESS)

CALLS: -NONE-

*)

VAR

PTR:ACHAR; (^POINTER TO ADDRESS TO BE CHANGED*)

EEGIN

PTR:=ADDR; <*SET PTR TO POINT AT DESIRED ADDRESS*)

PTR-:=CHR(VAL) (*POKE NEW VALUE INTO ADDRESS POINTED TO BY PTR*)

END;

FUNCTION PEEKBYTE<ADDR: INTEGER): INTEGER;

(«

PEEKBYTE: SIMPLE BASIC STYLE PEEK AT MEMORY LOCATIONS

PEEKBYTE PROVIDES THE PASCAL USER WITH A METHOD/ SIMILAR TO THE

BASIC PEEK, TO FIND OUT THE CONTENTS OF MEMORY LOCATIONS.

ENTRY: INTEGERVARIABLE :* PEEKBYTE<ADDR) ; (SAMPLE CALL)

ADDR ■ ADDRESS TO BE LOOKED AT

EXIT: PEEKBYTE ■ CONTENTS OF THE ADDRESS GIVEN BY ADDR

CHANGES: INTEGERVARIABLE IN THE CALLING ROUTINE

CALLS: -NONE-

#)

VAR

PTR:"CHAR; (^POINTER TO ADDRESS TO BE LOOKED AT*)

BEGIN

PTR:=ADDR; <*SET PTR TO POINT TO DESIRED ADDRESS*)

PEEKBYTE: =ORD(PTR-s) <*PEEKBYTE "PEEKS AT" AND

RETURNS CONTENTS OF ADDRESS POINTED TO BY PTR*)

END;

MODEND.

APPENDIX G: HELPFUL HINTS

The following are assorted statements that may prove to be useful wh*n

using the ATARI Pascal Language System.

1. Compilation of Pascal programs using Floating Point numbers (REALS)

requires that the Include file FLTPROCS or STDPROCS be identified

within the declaration body of the source. In addition the FPLIB

must be linked with your compiled source and PASLIB. Failure to do

so will cause your compilation and/or linking to error. Refer to

the demo program CALC for an example.

2. Identifiers are significant to only eight characters.

3. CLOSEDEL can be used with any file so be careful. You may

accidentally delete something that you didn't expect to.

4. While standard procedures are built into the compiler, others

require the appropriate Include files for declaration purposes.

Check these files to determine if you need them. These Include

files may be listed on the printer by use of the copy option und*r

DOS.

5. The reserved word "PREDEFINED" allows certain procedures and

functions to become part of the scope surrounding the program. In

addition any file parameter is passed as two parameters as required

by the run—time routines.

152

INDEX

ABSOLUTE variables, 32, 59

ADDR 41

AND

and 16 bit variables, 94

ARCTAN 104

ARRAY

as procdural parameters 102

storage 29

ASSIGN 50, 131

Assignment compatibility 90

Available memory message 8, 13

BCD REAL 71

Eit and byte manipulation 38, 93

BLOCKREAD 52

BLOCKWRITE 52

BOOLEAN 70

Built-in procedures

ADDR 41

ASSIGN 50

BLOCKREAD 52

BLOCKWRITE 52

CLOSE 54

CLOSEDEL 54

CLRBIT 38

CONCAT 45

COPY 46

DELETE 48

EXIT 37

FILLCHAR 43

GNB 51

HI 40

INSERT 49

IORESULT 56

LENGTH 44

LO 40

MAXAVAIL 57

MEMAVAIL 57

MOVE 35

MOVELEFT 35

MOVERIGHT 35

OPEN * 53

P05 47

SETBIT 38

SHL 39

SHR 39

SIZEOF 42

summary of 53

SWAP 40

TSTBIT r^e

WNB 51

PURGE 55

BYTE 71, 86

Byte manipulation

(see Bit and byte manipulation)

CALC. FAS 7

Chaining 103

Chaining

absolute variable communication 32

example 33

global variable communation 32

hom-to 32

maintain heap 32

CHAR 70

CHR 70, 90, 105

CLOSE 54, 132

CLOSEDEL 54, 141

CLRBIT 38

Comments

syntax Q3

Compatibility with UCSD 77

Compiler control toggles

entry point control $E 14

listing controls *P/*L 15

run-time range checking control *R 15

run-time exception checking control *X 15

source code include mechanism *I 14

strict/relaxed type checking control $T/$W,14

summary 1£

syntax 14

Comp iler

output 81 13

. output 8, 13

available memory 8

compile time informational output 7, 13

execution 7, 12

operational description 12

PHASE 1 13, is

PHASE 2 13

remaining memory 8

sample output 7

separate compilation 26

step-by-step instructions 7

system requirements 3

user table space 8

CQNCAT 45

Confromant arrays 102

Constant data at compile-time 61

COPY 46

154

Data storage 70

Data types

BOOLEAN 70

BYTE 71

CHAR 70

INTEGER 71

range 70

REAL 71

SET 75

size 70

STRING 71

WORD 71

DELETE 48

Distribution disk

contents 4

minimum configuration 3

-

End of file 128, 134, 135

EOF 104, 133

EOLN 104, 133

Error handling

run-time 68

Error message

type conflict 90

Error messages 18, 118

Exception checking

(see Compiler control toggles)

EXIT 37

Extensions to ISO standard

(see ISO standard extensions)

Extensions

summarg 81

EXTERNAL

and entry point symbols 14

and modular compilation 26

and procedures/functions 26

and variables 27

routines as parameters 26

FIB

(see File Information Block)

File Information Block 128

File variable 128

File variable untyped files are allowed 90

Fi1ename

definition 127

Filenames

associating external and internal 50

compiler input 7, 12

linker input 9, 19

Fi les

ASCII text 89

ASSIGN procedure 50

associating files with external

names 100

built-in procedures 100

chaining 151

closing 54, 132

creating 131

definition 127

deleting 54, 55

devices E:, S:, K:, P:, 50

error handling 56

example 130

fast byte routines 51

formatted output 137

hex output 106

implied conversions 90

local 50

local files and linker /D switch 20

opening (see also RESET) 53

pre-defined type TEXT 89

primitive file access 52

printer output 50, 14

temporary, (see local)

text

untyped

window variable

writing to printer

FILLCHAR

Floating Point REAL

Formatted output

FORWARD

FPLIB.ERL

GET

GNB

GOTO

GSSND.ERL

135,

89

128,

140

43

71

106,

101

4,

138

132, 133, 134

137

9, 19, 71, 152

133

51

96

4, 143

Heap management

ISO standard 142

MEMAVAIL and MAXAVAIL 57

parameters 104

Hexadecimal numbers 106

HI 40

I/O

(see Files)

Identifiers

and (± S3, 84

external signifigance 26

legal Pascal 83

156

Include files 4, 5, 8/ 14/ 152

INLINE

code examples 61

syntax 60

INSERT 49

INTEGER 71

IORESULT 56, 131, 138, 140

ISO standard extensions

absolute variables 91

additions to assignment compatibility

rules 95

BNF syntax description of ATARI Pascal,109

built-in procedures and functions 34

chaining 32

concise list of ATARI Pascal facilities, 1

ELSE clause on CASE statement 96

external procedures 98

INLINE 60

modular compilation 26

null strings 84

operators 94

WRD type transfer function 104

ISO standard

assignment compatibility 90

changes from Jensen and Wirth for

FOR loops 97

draft used by ATARI 1

extensions for conformant arrays 102

summary of features 81

.type compatibility 90

LENGTH 44

Line 135

Line numbers 18

Linker

/D and chaining 32

attributes of compatible modules 22

command file facility su/itch /F 20

data origin su/itch /d 19

effects of /P and /D on .COM file

contents 20

effects of using /D on local files 20

extending map switch /E 19

gaining memory space 19

input filenames 19

invocation 19

library search switch /S 19

load map switch /L 19

program origin switch /P 20

sample 9

sample output 9

saving space by using /D 20

switch summary 21

switches 19

LINK 4

Listing 7

LO 40

Local files

(see Files)

MAXAVAIL

MEMAVAIL

Modular compilation

and $E toggle

and EXTERNAL

e xample

overview

syntax

MOVE

MOVELEFT

MOVERIGHT

NOT

and 16 bit variables 94

70, 104

53, 133, 141

70, 94

93

70, 94

70, 94

16

21

93

70, 71, 90, 104

137

PACKED 70, 86

PASLIB 9, 152

PASLIE. ERL 4

Pointers 89

Portability 14

POS 47

Printer

assignment 50

writing example 140

writing to 140

Program sample

CHAIN Demo 33

158

57

57

26

26

26

26

26

35

35

35

ODD

OPEN

Operators

AND

and 16 bit variables

NOT

OR

Option Switches

comp i1er

linker

OR

and 16 bit variables

ORD

Output

formatted

DEMOCON (conformant arrays) 102

DEMQ_INLINE " 61

ExternalJDemo (Modular compilation) 27

PRINTER 140

Procedure ACCESS (strings) 73

Procedure ADDR DEMO 41

Procedure ASSIGN (strings) 72

Procedure COMPARE (strings) 74

Procedure CONCATJDEMO 45

Procedure COPYJDEMO 46

Procedure DELETEJDEMO 48

Procedure EXITTEST 37

Procedure FILLJJEMO 43

Procedure HI_LO_SWAP 40

Procedure INSERT_DEMO 49

Procedure MOVE_DEMO 36

Procedure P0SJ3EMQ 47

Procedure SHIFT_DEMQ 39

Procedure SIZE_pEMO 42

Procedure TST_SET_CLR JBITS 38

Procedure TEXTIQJDEMO 138

Procedure WRITE_READ_FILE_DEMG 129

PURGE 55, 141

PUT • 129

Range checking

(see Run-time)

READ 134

READLN 139

REAL

BCD 71

floating point 71

RECORD

storage 29

Remaining memory message 8

Requirements

run-time 4

system 3

Reserved words 117

RESET 133

REWRITE 131

Run-time Library

source 4

Run-time

error handling 68

exception checking 68

fatal errors 69

range checking 68

Sea lars

storage 29

SET 30

SETEIT

SHL

SHR

SIZEOF

Space reduction

and linker /D su/itch

STRING

STRING implementation details

STRING

access

and READLN

ass i gnment

comparison

CONCAT

COPY

default length

definition

explicit length declaration

null string

run—time error

use as arrays of characters

Str inqs

DELETE

INSERT

LENGTH

POS

SWAP

Symbols

Symbols

identifier significance

use of @ in identifiers

use of hexadecimal numeric literals

use of underscore in identifiers

TEXT files

definition

TSTBIT

Type checking toggle

Type conflict

error

Types

ABSOLUTE attribute for variables

data implementat ion

e x tend ed

file types

implementation of PACKED

p o inters

pre-defined

range of SET type

restrictions on use of ABSOLUTE

with strings

38

39

39

42

20

135

71

75

139

71

74

45

46

87

71, 86

87

85

68

92

48

49

44

47

40

83

84

83

84

84

135

38

14

89

59

70

86

89

86

89

86

88

59

8

51

71, 86

132

136

•

161

User table space

Window variable

(see Files)

WNB

WORD

WRITE

WRITELN

and text fi les

»

LIMITED WARRANTY ON MEDIA AND HARDWARE ACCESSORIES*

Wet Atari, Titc* guarantee to you, the original retail purchaser, that the medium on

which the APX program is recorded and any hardware accessories sold by AFX are free from

defects for thirty days from the date of purchase. Any applicable implied warranties,

including warranties of merchantability and fitness for a particular purpose, are also

limited to thirty days from the date of purchase* Some states don't allow limitations on

a warranty's period, so this limitation might not apply to you* If you discover such a

defect within the thirty-day period, call APX for a Return Authorization Number, and then

return the product along with proof of purchase date to APX* We will repair or replace

the product at our option*

You void this warranty if the APX product: (1) has been misused or shows signs of

excessive wear? (2) has been damaged by use with non-ATARI products} or (3) has been

serviced or modified by anyone other than an Authorized ATARI Service Center* Incidental

and consequential damages are not covered by this warranty or by any implied warranty*

Some states don't allow exclusion of incidental or consequential damages, so this

exclusion might not apply to you*

DISCLAIMER OF WARRANTY AND LIABILITY ON COMPUTER PROGRAMS*

Most APX programs have been written by people not employed by Atari, Inc* The programs we

select for APX offer something of value that we want to make available to ATARI Home

Computer owners* To offer these programs to the widest number of people economically, we

don't put APX products through rigorous testing* Therefore, APX produts are sold "as is",

and we do not guarantee them in any way* In particular, we make no warranty, express or

implied, including warranties of merchantability and fitness for a particular purpose* We

are not liable for any losses or damages of any kind that result from use of an APX

product*

ATARI PROGRAM EXCHANGE

REVIEW FORM

We're interested in your experiences with APX programs and documentation♦ both favorable and

unfavorable* Many software authors are willing and eager to improve their programs if they know

what users want* And* of course* we want to know about any bugs that slipped by us* so that the

software author can fix them* We also want to know whether our documentation is meeting your needs*

You are our best source for suggesting improvements! Please help us by taking a moment to fill in

this review sheet* Fold the sheet in thirds and seal it so that the address on the bottom of the

back becomes the envelope front* Thank you for helping us!

1* Name and AFX number of program

2* If you have problems using the program* please describe them here*

3* What do you especially like about this program?

4* What do you think the program's weaknesses are?

5* How can the catalog description be more accurate and/or comprehensive?

6* On a scale of 1 to 10* 1 being "poor" and 10 being "excellent"* please rate the following

aspects of this program?

 Easy to use

 , User-oriented (e*g** menus, prompts* clear language)

 Enjoyable

 Self-instructive

 Useful (non-game software)

 Imaginative graphics and sound

7* Describe any technical errors you found in the user instructions (please give page numbers)*

3* What did you especially like about the user instructions?

?♦ What revisions or additions would improve these instructions?

10* On a scale of 1 to 10, 1 representing "poor" and 10 representing "excellent", how would you

rate the user instructions and why?

Hi Other comments about the software or user instructions:

I I

ISTAMPI

I I

ATARI Program Exchange

Attn! Publications Dept*

P*0« Box 50047

60 E* Plumeria Drive

San Jose, CA 95150

[seal here]

