Motorola 6809 and
Hitachi 6309
Instruction Sets

© 2009 by Darrertkinson

A note about cycle counts

The MPU gcle counts listed throughout this document will sometimeswstvao
different \alues separated by a slash. In these casesshefue indicates the number
of cycles used on a 6809 or a 6309 CPU running in emulation midokee second alue
indicates the number ofcles used on a 6309 CPU only when running inveatiode.

Part |
Instruction Reference

ABX

Add Accumulator B to Index Register X
X « X+ ACCB

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ABX INHERENT 3A 3/1 1

E FH I N 2Z V C

The ABX instruction performs an unsigned addition of the conten&cofimulator B
with the contents of IndeRegister X.The 16-bit result is placed into Ind&egister X.
None of the Condition Codeafys are dé&cted.

The ABX instruction is similar in function to the LEAX B,X instructioA. significant
difference is that LEAX B,X treats B as aasvcomplementalue (signed), whereas
ABX treats B as unsigned.oF example, if X were to contain 303Band B were to
contain Fkg thenABX would produce 3114 in X, whereas LEAXB,X would produce
301A5in X.

Additionally, the ABX instruction does not &fct ary flags in the Condition Codes
register whereas the LEAX instruction doedeatt the Zero Hg.

One éample of a situation where tR€X instruction may be used is when X contains
the base address of a data structure or array and B contairisednicod specififield or
array element. In this scenarBX will modify X to point directly to the ®Id or array
element.

The ABX instruction was included in the 6x09 instruction set for compatibility with the
6801 microprocessor

ADC (@Bit)
Add Memory Byte plus Carry with Accumulator A or B
rr «<r+M)+C

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
ADCA 89 2 2 | 99 | 4/3| 2| A9 4+ | 2+| B9 | 5/4| 3
ADCB C9 2 2 | D9 | 4/3| 2| E9 4+ | 2+| F9 | 5/4| 3
EFHI NZVC

These instructions add the contents of a byte in memory plus the contents of the Cart
flag with eitherAccumulatorA or B. The 8-bit result is placed back into the spedifi
accumulatar

The Half-Carry f&g is set if a carry into bit 4 occurred; cleared otherwise.
The Najative flag is set equal to thewevalue of bit 7 of the accumulator
The Zero fag is set if the e accumulator &lue is zero; cleared otherwise.
The Ovwerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry f&g is set if a carry out of bit 7 occurred; cleared otherwise.

O< NZIT

TheADC instruction is most often used to perform addition of the subsequent bytes of €
multi-byte additionThis allovs the carry from a prousADD or ADC instruction to be
included when doing addition for thextdigherorder byte.

Since the 6x09 prades a 16-bitADD instruction, it is not necessary to use the 8-bit
ADD andADC instructions for performing 16-bit addition.

SeeAlso: ADCD, ADCR

ADCD

Add Memory Word plus Carry with Accumulator D
ACCD’ « ACCD + (M:M+1) + C

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
ADCD 1089| 5/4 | 4 |1099| 7/5| 3 |10A9|7+/6+ 3+|10B9| 8/6| 4
E FHI1 NZVC

TheADCD instruction adds the contents of a double-bglee’/in memory plus thealue
of the Carry fhg withAccumulator D.The 16 bit result is placed back idacumulator
D.

The Half-Carry f&g is not dected by theADCD instruction.

The Naative flag is set equal to thewevalue of bit 15 of the accumulator
The Zero fag is set if the ve Accumulator D walue is zero; cleared otherwise.
The Oerflow flag is set if anwerflow occurred; cleared otherwise.

The Carry f&g is set if a carry out of bit 15 occurred; cleared otherwise.

O< NZI

The ADCD instruction is most often used to perform addition of subsequamnisvof a
multi-byte additionThis allons the carry from a preousADD or ADC instruction to be
included when doing addition for thextdigherorder word.

The follonving instruction sequence is arample shwing hav 32-bit addition can be
performed on a 6309 microprocessor:

LDQ VAL1 ; Q = first 32-bit value

ADDW VAL2+2 ; Add lower 16 bits of second value
ADCD VAL2 ; Add upper 16 bits plus Carry
STQ RESULT : Store 32-bit result

SeeAlso: ADC (8-bit), ADCR

ADCR

Add Source Register plus Carry to Destination Register
r’ <rl+r0+C

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ADCR r0,r1 IMMEDIATE 1031 4 3

E FHI N 2Z V C

OB BT O

The ADCR instruction adds the contents of a souragster plus the contents of the
Carry flag with the contents of a destinatiorgister The result is placed into the
destination rgister

The Half-Carry f&g is not dected by theADCR instruction.

The Najative flag is set equal to thele of the resuls’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Owerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry f&g is set if a carry out of the high-order bit occurred; cleared otherwise.

O< NZIT

Any of the 6309 rgisters &cept Q and MD may be speeifi as the source operand,
destination operand or both;vaever specifying the PC gester as either the source or
destination produces undafd results.

TheADCR instruction will perform either 8-bit or 16-bit addition according to the size of
the destination ggster When rgjisters of diferent sizes are spe@t, the source will be
promoted, demoted or substituted depending on the size of the destination and on whic
specift 8-bit reister is ivolved. See¢ 6309 InterRegister Operatiorison pagel43 for
further details.

The Immediate operand for this instruction is a postbyte which uses the same format &
that used by th& FR and EXG instructions. See the description offthR instruction
for further details.

SeeAlso: ADC (8-bit), ADCD

ADD (®Bi)
Add Memory Byte to 8-Bit Accumulator

I «r+ (M)
SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | OP ~ # | op ~ # | OP ~ #
ADDA 8B 2 2| 9B | 4/3| 2| AB 4+ | 2+| BB | 5/4| 3
ADDB CB 2 2| DB| 4/3| 2 | EB 4+ | 2+| FB | 5/4| 3
ADDE 118B| 3 3 |119B| 5/4 | 3 |11AB| 5+ | 3+|11BB| 6/5| 4
ADDF 11CB| 3 3 |11DB| 5/4 | 3 |11EB| 5+ | 3+|11FB| 6/5| 4

ADDE and ADDF are aailable on 6309 only

E FHI N 2Z V C

! OB B O

These instructions add the contents of a byte in memory with one of the 8-bit
accumulators (A,B,E,F) he 8-bit result is placed back into the spedifaccumulator

The Half-Carry f&g is set if a carry into bit 4 occurred; cleared otherwise.
The Naative flag is set equal to thewevalue of bit 7 of the accumulator
The Zero fag is set if the e accumulator &lue is zero; cleared otherwise.
The Ovwerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry fag is set if a carry out of bit 7 occurred; cleared otherwise.

O< NZIT

The 8-bitADD instructions are used for single-byte addition, and for addition of the
least-signiftant byte in multi-byte additions. Since the 6x09 alseiges a 16-biADD
instruction, it is not necessary to use the 3ABID andADC instructions for performing
16-bit addition.

SeeAlso: ADD (16-bity, ADDR

ADD (6 Bit)
Add Memory Word to 16-Bit Accumulator
rr < r+ (M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
ADDD C3|4/3| 3| D3| 6/4| 2| E3 |6+/5#2+| F3 | 7/5]| 3
ADDW 108B| 5/4 | 4 |109B| 7/5 | 3 |10AB|7+/6+ 3+|10BB| 8/6 | 4

ADDWis available on 6309 only

E FH I N2z V C

vyt

These instructions add the contents of a double-lajteevn memory with one of the 16-
bit accumulators (D,W)l'he 16-bit result is placed back into the spedificcumulator

The Half-Carry f&g is not dected by these instructions.

The Najative flag is set equal to thewevalue of bit 15 of the accumulator
The Zero fag is set if the e accumulator &lue is zero; cleared otherwise.
The Ovwerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry fag is set if a carry out of bit 15 occurred; cleared otherwise.

O< NZIT

The 16-bitADD instructions are used for double-byte addition, and for addition of the
least-signiftant word of multi-byte additions. See the description of #WBCD
instruction for anxample of hav 32-bit addition can be performed on a 6309 processor

SeeAlso: ADD (8-bit), ADDR

ADDR

Add Source Register to Destination Register

r1’ —rl1+7r0

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
ADDR r0,r1 IMMEDIATE 1030 4 3

E FH I N Z V C

OB B O

The ADDR instruction adds the contents of a souragister with the contents of a
destination rgister The result is placed into the destinatiogiseer

The Half-Carry f&g is not dected by théADDR instruction.

The Najative flag is set equal to thele of the resuls’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Ovwerflow flag is set if anerflow occurred; cleared otherwise.

The Carry fag is set if a carry out of the high-order bit occurred; cleared otherwise.

O< NZIT

Any of the 6309 rgisters &cept Q and MD may be speeifi as the source operand,
destination operand or both;wever specifying the PC gester as either the source or
destination produces undafd results.

The ADDR instruction will perform either 8-bit or 16-bit addition according to the size
of the destination gster When rgisters of diferent sizes are spe@f, the source will

be promoted, demoted or substituted depending on the size of the destination and ¢
which specift 8-bit ragister is iwvolved. See“6309 InterRegister Operatioris on
pagel43for further details.

A Load Efective Addressinstruction which adds one of the 16-bit accumulators to an
index register (such as LEAX D,X) could be replaced byADR instruction (ADDR
D,X) in order to see 4 gcles (2 gcles in Natve Mode). Havever, since more Condition
Code fags are dkcted by theADDR instruction, you shouldvaid this optimization if
preseration of the dected fags is desired.

The Immediate operand for this instruction is a postbyte which uses the same format &
that used by th& FR and EXG instructions. See the description offtRR instruction
for further details.

SeeAlso: ADD (8-bit), ADD (16-bit)

-10 -

AIM

Logical AND of Immediate Value with Memory Byte
M « (M) AND IMM

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED

FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
AIM #i8;EA 02 6 3| 62 7+ | 3+| 72 7 4
E FH I NZVC

The AIM instruction logically ANDs the contents of a byte in memory with an 8-bit
immediate alue. The resulting @lue is placed back into the designated memory
location.

N The Naative flag is set equal to thewevalue of bit 7 of the memory byte.

Z The Zero fag is set if the e value of the memory byte is zero; cleared otherwise.
V The Oerflow flag is cleared by this instruction.

C The Carry fhg is not dected by this instruction.

AIM is one of the more useful additions to the 6309 instruction set.ds¢ thkee separate
instructions to perform the same operation on a 6809:

6809 (6 instruction bytes; 12ycles)

LDA #B3F
ANDA 4,U
STA 4,U
6309 (3 instruction bytes; 8ycles)
AIM #$3F;4,U

Note that the assembler syntax used for Mi®l operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immedia
operand and the address operand.

The object code format for t#dM instruction is:
OPCODE |IMMED VALUE | ADDRESS/INDEX BYTE(S)

SeeAlso: AND, EIM, OIM, TIM

-11 -

AND (8 Bit)
Logically AND Memory Byte with Accumulator A or B

'« r AND (M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
ANDA 84 2 2 | 94| 4/3| 2| Ad 4+ | 2+| B4 | 5/4| 3
ANDB C4 2 2| D4 | 4/3| 2 | E4 4+ | 2+| F4 | 5/4| 3
E FH I N2ZVC

These instructions logicall AND the contents of a byte in memory with either
AccumulatorA or B. The 8-bit result is then placed in the spedfaccumulator

The Naative flag is set equal to thewevalue of bit 7 of the accumulator

The Zero fag is set if the e value of the accumulator is zero; cleared otherwise.
The Owerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

TheAND instructions are commonly used for clearing bits and for testing bits. Consider
the folloving examples:

ANDA #%11101111 ;Clearshit4in A
ANDA #%00000100 ;Sets Z flag if bit 2 is not set

When testing bits, it is often preferable to use the BIT instructions instead, siyice the
perform the same logicaAND operation without modifying the contents of the
accumulatar

SeeAlso: AIM, ANDCC, ANDD, ANDR, BAND, BIAND, BIT

212 -

ANDCC

Logically AND Immediate Value with the CC Register
CC' « CC AND IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ANDCC #i8 IMMEDIATE 1C 3 2

This instruction logicallyANDs the contents of the Condition Codegiseer with the
immediate byte specdd in the instructionThe result is placed back into the Condition
Codes rgistet

TheANDCC instruction preides a method to clear specifiags in the Condition Codes
register All fl ags that correspond to "0" bits in the immediate operand are cleared, while
those corresponding with "1"s are left unchanged.

The bit numbers for eachafi are shan belaw:

One of the more common uses for &DCC instruction is to clear the IRQ and FIRQ
Interrupt Masks (I and F) at the completion of a routine that runs with interrupts disabled.
This is accomplished byecuting:

ANDCC #$AF Clear bits 4 and 6 in CC

Some assemblers will accept a comma-delimited list of the bit names to be cleared as «
alternatve to the immediatexpression. Br instance, thexample abwe might also be
written as:

ANDCC |F : Clear bits 4 and 6 in CC

This syntax is generally discouraged due to the confusion it can create as to whether
means clear the | and F bits, or clear all bitsept | and F

More examples:

ANDCC #$FE ; Clear the Carry flag
ANDCC #1 ; Clear all flags except Carry

SeeAlso: AND (8-bit), ANDD, ANDR, CWAI, ORCC

-13 -

ANDD

Logically AND Memory Word with Accumulator D
ACCD’ « ACCD AND (M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
ANDD 1084| 5/4 | 4 |1094| 7/5| 3 |10A4|7+/6+4 3+|10B4| 8/6| 4
E FH I NZVC

The ANDD instruction logicallyANDs the contents of a double-bytalwe in memory
with the contents ohccumulator DThe 16-bit result is placed back itocumulator D.

The Najative flag is set equal to thewevalue of bit 15 oAccumulator D.

The Zero fag is set if the e value of theAccumulator D is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O< NZ

One use for th&ANDD instruction is to truncate bits of an addreakie. for example:
ANDD #$EO000 ;Convert address to that of its 8K page

For testing bits, it is often preferable to use 8I@D instruction instead, since it
performs the same logicaAND operation without modifying the contents of
Accumulator D.

SeeAlso: AND (8-bit), ANDCC, ANDR, BITD

-14 -

ANDR

Logically AND Source Register with Destination Register
rl’” « r1AND O

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ANDR r0,r1 IMMEDIATE 1034 4 3

E FH I N 2Z V C
1] t]0

TheANDR instruction logicallyANDs the contents of a sourcgigter with the contents
of a destination gaster The result is placed into the destinatiogiséet

The Najative flag is set equal to thele of the resuls’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

Any of the 6309 rgisters &cept Q and MD may be speeifi as the source operand,
destination operand or both;vaever specifying the PC gester as either the source or
destination produces undafd results.

The ANDR instruction will perform either an 8-bit or 16-bit operation according to the
size of the destination gester When rejisters of diferent sizes are spe@t, the source

will be promoted, demoted or substituted depending on the size of the destination and ¢
which specift 8-bit ragister is iwvolved. See“6309 InterRegister Operatioris on
pagel43for further details.

The Immediate operand for this instruction is a postbyte which uses the same format &
that used by th&@FR and EXG instructions.df details, see the description of fhieR
instruction.

SeeAlso: AND (8-bit), ANDCC, ANDD

-15 -

ASL (8 Bit

Arithmetic Shift Left of 8-Bit Accumulator or Memory Byte

<+ P 0
C b7 = bO
SOURCE INHERENT DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | OP ~ # | oOP ~ #
ASLA 48 | 2/1| 1
ASLB 58 | 2/1| 1
ASL 08 | 6/5| 2| 68 6+ | 2+| 78 | 7/6| 3
E FHI1 NZVC

~ O I IO

These instructions shift the contents of &her B accumulator or a spe@t byte in
memory to the left by one bit, clearing bit 0. Bit 7 is shifted into the Caagydf the
Condition Codes gaster

The afect on the Half-Carry #lg is undefied for these instructions.

The Najative flag is set equal to thewevalue of bit 7; preiously bit 6.

The Zero fag is set if the e 8-bit value is zero; cleared otherwise.

The Owerflow flag is set to the Exclus-OR of the original alues of bits 6 and 7.
The Carry fag receres the alue shifted out of bit 7.

O< NZIT

TheASL instruction can be used for simple multiplication (a single left-shift multiplies
the \alue by 2). Other uses include gersion of data from serial to parallel and vise-
versa.

The 6309 does not primle variants ofASL to operate on the E and F accumulators.
However, you can achie the same functionality using t#DR instruction. The
instructionsADDR E,E andADDR FF will perform the same left-shift operation on the E
and F accumulators respeetly.

TheASL and LSL mnemonics are duplicates. Both produce the same object code.

SeeAlso: ASLD

-16 -

ASLD

Arithmetic Shift Left of Accumulator D

C bl5 = b0

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ASLD INHERENT 1048 3/2 2

E FH I N Z V C

O I I

This instruction shifts the contentsAdécumulator D to the left by one bit, clearing bit O.
Bit 15 is shifted into the Carrydt of the Condition Codesgister

N The Najative flag is set equal to thewevalue of bit 15; preiously bit 14.

Z The Zero fag is set if the e 16-bit \alue is zero; cleared otherwise.

V The Owerflow flag is set to the Exclu@-OR of the original alues of bits 14 and 15.
C The Carry fag receies the alue shifted out of bit 15.

TheASL instruction can be used for simple multiplication (a single left-shift multiplies
the \alue by 2). Other uses include gersion of data from serial to parallel and vise-
versa.

The D accumulator is the only 16-bitgister for which amASL instruction has been
provided.You can hwever achige the same functionality using tA®DR instruction.
For example, ADDR W,wW will perform the same left-shift operation on thWg
accumulatar

A left-shift of the 32-bit Q accumulator can be agbi as follovs:

ADDR W\W ; Shift Low-word, Hi-bit into Carry
ROLD ; Shift Hi-word, Carry into Low-bit

TheASLD and LSLD mnemonics are duplicates. Both produce the same object code.

SeeAlso: ASL (8-bit), ROL (16-bit)

-17 -

ASR (8 Bit)
Arithmetic Shift Right of 8-Bit Accumulator or Memory Byte

Ny ~

b7 » bo C
SOURCE INHERENT DIRECT INDEXED EXTENDED
FORMS oP ~ # | OP ~ # | OP ~ # | OP ~ #
ASRA 47 | 2/1| 1
ASRB 57 | 2/1| 1
ASR 07 | 6/5| 2| 67 6+ | 2+ | 77 7/6| 3
E FH I NZVC

~ ! ! !

These instructions arithmetically shift the contents of Aher B accumulator or a
specifed byte in memory to the right by one bit. Bit O is shifted into the Cagydi the
Condition Codes gaster The \alue of bit 7 is not changed.

The afect on the Half-Carry #lg is undefied for these instructions.
The Naative flag is set equal to thele of bit 7.

The Zero fag is set if the nve 8-bit value is zero; cleared otherwise.
The Owerflow flag is not dected by these instructions.

The Carry fag receres the walue shifted out of bit O.

O< NZIT

TheASR instruction can be used in simpleisiion routines (a single right-shiftwildes
the \alue by 2). Be careful here, as a right-shift is not the same assouliwhen the
value is ngative; it rounds in the wrong directionoFexample, -5 (FBg) divided by 2
should be -2 bt, when arithmetically shifted right, is -3 (RR

The 6309 does not primle variants ofASR to operate on the E and F accumulators.

SeeAlso: ASRD

-18 -

ASRD

Arithmetic Shift Right of Accumulator D

L ~

b15 > b0 Cc

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ASRD INHERENT 1047 3/2 2

E FH I N 2z V C

1] !

This instruction shifts the contents AEcumulator D to the right by one bit. Bit O is
shifted into the Carry dig of the Condition Codesgister The \alue of bit 15 is not
changed.

The Najative flag is set equal to thele of bit 15.

The Zero fag is set if the e 16-bit \value is zero; cleared otherwise.
The Owerflow flag is not dkcted by this instruction.

The Carry fag receres the walue shifted out of bit O.

O<NZ

TheASRD instruction can be used in simplgisiion routines (a single right-shiftwildes
the \alue by 2). Be careful here, as a right-shift is not the same assouliwhen the
value is ngative; it rounds in the wrong directionoFexample, -5 (FFFE) divided by 2
should be -2 bt, when arithmetically shifted right, is -3 (FFR]P

The 6309 does not prale a \ariant ofASR to operate on th& accumulatgralthough it
does prwoide the LSRV instruction for performing a logical shift.

An arithmetic right-shift of the 32-bit Q accumulator can be aehias follovs:

ASRD ; Shift Hi-word, Low-bit into Carry
RORW ; Shift Low-word, Carry into Hi-bit

SeeAlso: ASR (8-bit), ROR (16-bit)

-19 -

BAND

Logically AND Register Bit with Memory Bit
r.dstBit’ ~ r.dstBit AND (DPM).srcBit

SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BAND r,sBitdBit,addr DIRECT 1130 716 4

The BAND instruction logicallyANDs the \alue of a speci#d bit in either thé, B or
CC ragisters with a spec#d bit in memoryThe resulting &lue is placed back into the
register bit. None of the Condition Codadk are décted by the operation unless CC is
specifed as the gster in which case only the destination bit may beaéd. The
usefulness of theAND instruction is limited by theaict that only DirecAddressing is
permitted.

Accumulator A Memory Location $0040
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
ojo|ofof1|1]|1]|1($%0OF 111]0]0|0|1|1|0| $Cb
l AND |0 |« |
ofolof[o|1][1]0[1]$0D BAND A 5,1, $40

The fgure abge shavs an @ample of the BND instruction where bit 1 ohccumulator
A is ANDed with bit 5 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operandsdestination egister, souice bit destination bitsource addess

Since the Condition Codeafis are not &cted by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for theABID instruction is:
$11 $30 POSTBYTE | ADDRESS LSB

POSTBYTE FORMAT

Code Register
00 ccC
|] 1] 1 J
01 A
—— Destination (rgister) Bit Number (0 - 7) 10 B
Source (memory) Bit Number (0 - 7) 11 Invalid

Register Code

SeeAlso: BEOR, BIAND, BIEOR, BIOR, BOR, LDBT, STBT

-20 -

BCC
Branch If Carry Clear

IF CC.C =0 then PC’ ~ PC+ IMM

SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BCC address RELATIVE 24 3 2

E FHI N 2Z V C

This instruction tests the Carrnyadl in the CC mgister and, if it is clear (0), causes a
relative branch. If the Carrydp is 1, the CPU continueseeuting the ne instruction in
sequence. None of the Condition Codg¥l are décted by this instruction.

When used follwing a subtract or compare of unsigned binaaugs, the BCC
instruction will branch if the sourcealue was higher than or the same as the original
destination glue. for this reason, 6809/6309 assemblers will accept BHS as an alternate
mnemonic for BCC.

BCC is generally not useful folldng INC, DEC, LD, ST off ST instructions since none
of those dect the Carry ig. BCC will alvays branch follewing a CLR instruction and
will never branch follaving a COM instruction due to theaw those instructions fafct
the Carry fhg.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BCC instruction bytes & been fetched) with the 8-bit #a-complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BCC instruction. e leange is
required then the LBCC instruction may be used instead.

SeeAlso: BCS, BGE, LBCC

=21 -

BCS
Branch If Carry Set

IF CC.C #0then PC’ « PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BCS address RELATIVE 25 3 2

E FHI N 2Z V C

This instruction tests the Carradl in the CC rgister and, if it is set (1), causes a rekti
branch. If the Carry #lg is 0, the CPU continuexezuting the ne instruction in
sequence. None of the Condition Codgél are dé&cted by this instruction.

When used follwing a subtract or compare of unsigned binaaugs, the BCS
instruction will branch if the sourcealue was laver than the original destinatiomalue.

For this reason, 6809/6309 assemblers will accept BLO as an alternate mnemonic fc
BCS.

BCS is generally not useful folng INC, DEC, LD, ST off ST instructions since none
of those dect the Carry ig. BCS will nger branch follaving a CLR instruction and
will always branch follewing a COM instruction due to theay those instructions fafct
the Carry fhg.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BCS instruction bytes ka been fetched) with the 8-bit da~complement alue
contained in the second byte of the instructibine range of the branch destination is
limited to -126 to +129 bytes from the address of the BCS instruction. ex laange is
required then theBCS instruction may be used instead.

SeeAlso: BCC, BLT, LBCS

-22 -

BEOR

Exclusive-OR Register Bit with Memory Bit
r.dstBit’ ~ r.dstBit [(DPM).srcBit

SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BEOR r,sBitdBit,addr DIRECT 1134 716 4

The BEOR instruction Exclugly ORs the alue of a specifid bit in either thé,, B or
CC ragisters with a spec#d bit in memoryThe resulting &lue is placed back into the
register bit. None of the Condition Codeadk are décted by the operation unless CC is
specifed as the gster in which case only the destination bit may beaéd. The
usefulness of the BEOR instruction is limited by taet that only DirecAddressing is
permitted.

Accumulator A Memory Location $0040
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
olojofofafafaf1]| soOF 1({1(0(O0f(O|1[1|O0| $C6
l EOR [1 |« |
o[olof[o|1][1]0[1]%$0D BECR A 6,1, $40

The figure abwe shavs an @ample of the BEOR instruction where bit 1Aaicumulator
A is Exclusvely ORed with bit 6 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operandsdestination egister, souice bit destination bitsouice addess

Since the Condition Codeafis are not &cted by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BEOR instruction is:
$11 $34 POSTBYTE | ADDRESS LSB

See the description of tH®AND instruction onpage20 for details about the postbyte
format used by this instruction.

SeeAlso: BAND, BIAND, BIEOR, BIOR, BOR, LDBT, STBT

-23-

BEQ

Branch If Equal to Zero
IF CC.Z #0thenPC ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BEQ address RELATIVE 27 3 2

E FHI N 2Z V C

This instruction tests the Zer@g in the CC mgister and, if it is set (1), causes a rekti
branch. If the Z #ig is 0, the CPU continuegeeuting the ne instruction in sequence.
None of the Condition Codeafyjs are dé&cted by this instruction.

When used folleving almost an instruction that produces, tests orves a @alue, the
BEQ instruction will branch if thatalue is equal to zero. In the case of an instruction
that performs a subtract or compare, the BEQ instruction will branch if the s@lwee v
was equal to the original destinaticalwe.

BEQ is generally not useful follang a CLR instruction since the A§ is alvays set.

The following instructions produce or me values, it do not dect the Z fag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the curaéue of the PC gaster (after the
BEQ instruction bytes & been fetched) with the 8-bit @a~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BEQ instruction. fer leange is
required then theBEQ instruction may be used instead.

SeeAlso: BNE, LBEQ

-24 -

BGE

Branch If Greater than or Equal to Zero

IF CC.N = CC.V then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BGE address RELATIVE 2C 3 2
E FHI N 2Z V C

This instruction tests the gative (N) and Owerflow (V) flags in the CC gaster and, if
both are set OR both are cleeauses a relae branch. If the N and flags do not hae
the same &lue then the CPU continueseeuting the ne instruction in sequence. None
of the Condition Codedls are décted by this instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
BGE instruction will branch if the sourcealue was greater than or equal to the original
destination glue.

The branch address is calculated by adding the curatung of the PC gaster (after the
BGE instruction bytes k& been fetched) with the 8-bit #a-complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BGE instruction. ex leange is
required then theBGE instruction may be used instead.

SeeAlso: BHS, BLT, LBGE

-25 -

BGT

Branch If Greater Than Zero

IF (CC.N = CC.V) AND (CC.Z = 0) then PC’ « PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
BGT address RELATIVE 2E 3 2
E FH I N 2z V C

This instruction tests the Zero (Zadl in the CC mgister and, if it is cleahND the values

of the Nagative (N) and Oerflow (V) flags are equal (both set OR both clear), causes a
relatve branch. If the N and flags do not hae the samealue or if the Z fhg is set then

the CPU continuesxecuting the ne instruction in sequence. None of the Condition
Code fags are décted by this instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
BGT instruction will branch if the sourceale was greater than the original destination
value.

The branch address is calculated by adding the curaéuind of the PC gaster (after the
BGT instruction bytes h& been fetched) with the 8-bit #a-complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BGT instruction. igerleange is
required then theBGT instruction may be used instead.

SeeAlso: BHI, BLE , LBGT

- 26 -

BHI
Branch If Higher

IF (CC.Z = 0) AND (CC.C = 0) then PC’ « PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
BHI address RELATIVE 22 3 2
E FH I N 2z V C

This instruction tests the Zero (Z) and Carry (@y4l in the CC gaster and, if both are
zero, causes a reled branch. If either the Z or Cafis are set then the CPU continues
executing the ne instruction in sequence. None of the Condition Caalgsfhre décted

by this instruction.

When used follwing a subtract or compare of unsigned binaalues, the BHI
instruction will branch if the sourceale was higher than the original destinatiaiue.

BHI is generally not useful folleing INC, DEC, LD, ST off ST instructions since none
of those dkct the Carry #g.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BHI instruction bytes ha been fetched) with the 8-bit @da~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BHI instruction. Igarlaange is
required then theBHI instruction may be used instead.

SeeAlso: BGT, BLS, LBHI

-27 -

BHS

Branch If Higher or Same

IF CC.C =0 then PC’ ~ PC+ IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BHS address RELATIVE 24 3 2
E FHI N 2Z VC

This instruction tests the Carnadl in the CC mgister and, if it is clear (0), causes a
relatve branch. If the Carrydf is 1, the CPU continuegezuting the ne instruction in
sequence. None of the Condition Codgél are dé&cted by this instruction.

When used following a subtract or compare of unsigned binaajuss, the BHS
instruction will branch if the sourcealue was higher or the same as the original
destination glue.

BHS is generally not useful folldng INC, DEC, LD, ST off ST instructions since none
of those dkct the Carry #g.

BHS is an alternate mnemonic for the BCC instruction. Both produce the same objec
code.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BHS instruction bytes Wwa been fetched) with the 8-bit @a~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BHS instruction. ferleange is
required then theBHS instruction may be used instead.

SeeAlso: BGE, BLO, LBHS

- 28 -

BIAND

Logically AND Register Bit with Inverted Memory Bit
r.dstBit’ ~ r.dstBit AND (DPM).srcBit

SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BIAND r,sBitdBit,addr DIRECT 1131 716 4

The BIAND instruction logicallyANDs the \alue of a specéd bit in either thé, B or
CC raisters with the iverted \alue of a speciid bit in memoryThe resulting &lue is
placed back into the gester bit. None of the Condition Codadk are décted by the
operation unless CC is speeili as the gaster in which case only the destination bit
may be dkcted.The usefulness of the BIAND instruction is limited by taetfthat only
DirectAddressing is permitted.

Accumulator A Memory Location $0040
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
ofofofofa]a[2]2] soF 1]1]ofofolx]z2]0] sce
| »[1] AND [0]«—— INVERT «—|
|
Y BIAND A 1,3, $40
oloJofofo[x]22] s07

The fgure abwe shavs an &le of the BIAND instruction where bit 3 of
AccumulatorA is ANDed with the inverted alue of bit 1 from the byte in memory at
address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operandsdestination egister, souice bit destination bitsouice addess

Since the Condition Codeafis are not &cted by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BIAND instruction is:
$11 $31 POSTBYTE | ADDRESS LSB

See the description of tH®AND instruction onpage20 for details about the postbyte
format used by this instruction.

SeeAlso: BAND, BEOR, BIEOR, BIOR, BOR, LDBT, STBT

-29 -

BIEOR

Exclusively-OR Register Bit with Inverted Memory Bit
r.dstBit’ ~ r.dstBit [1 (DPM).srcBit

SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BIEOR r,sBit,dBit,addr DIRECT 1135 716 4

The BIEOR instructionxxlusively ORs the alue of a speciéd bit in either thé, B or
CC raisters with the iverted \alue of a speciid bit in memoryThe resulting &lue is
placed back into the gester bit. None of the Condition Codadk are décted by the
operation unless CC is speeili as the gaster in which case only the destination bit
may be dkected.The usefulness of the BIEOR instruction is limited by e that only
DirectAddressing is permitted.

Accumulator A Memory Location $0040
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
ofofofo|1]|1|1|1]|$OF 1[1f{ofojo|1]|1|0| $C6
| »[1] EOR[1]«— INVERT <«
|
Y BIECR A 0,3, $40
ojojlo|o|O|1|1]1]| %07

The fgure abwe shavs an @ample of the BIEOR instruction where bit 3 of
AccumulatorA is Exclusvely ORed with the werted \alue of bit O from the byte in
memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operandsdestination egister, souice bit destination bitsouice addess

Since the Condition Codeafis are not &cted by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BIEOR instruction is:
$11 $35 POSTBYTE | ADDRESS LSB

See the description of tH®AND instruction onpage20 for details about the Postbyte
format used by this instruction.

SeeAlso: BAND, BEOR, BIAND, BIOR, BOR, LDBT, STBT

-30 -

BIOR

Logically OR Reqister Bit with Inverted Memory Bit
r.dstBit’ ~ r.dstBit OR (DPM).srcBit

SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BIOR r,sBitdBit,addr DIRECT 1133 716 4

The BIOR instruction ORs thealue of a specid bit in either thé\, B or CC reisters
with the irverted \alue of a specid bit in memoryThe resulting &lue is placed back
into the rgister bit. None of the Condition Codexds are décted by the operation
unless CC is speafd as the gaster in which case only the destination bit may be
affected.The usefulness of the BIOR instruction is limited by thet that only Direct
Addressing is permitted.

Accumulator A Memory Location $0040
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
olojofofafafaf1]| soOF 1({1(0(O0f(O|1[1|O0| $C6
| »[0] OR[1]«— INVERT«— |
|
v BICR A 0,4, $40
ofojo|1f21]1|1|1] $1F

The figure abwe shavs an @ample of the BIOR instruction where bit 4Ad¢cumulator
A is logically ORed with the werted \alue of bit O from the byte in memory at address
$0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operandsdestination egister, souice bit destination bitsouice addess

Since the Condition Codeafis are not &cted by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BIOR instruction is:
$11 $33 POSTBYTE | ADDRESS LSB

See the description of tH®AND instruction onpage20 for details about the Postbyte
format used by this instruction.

SeeAlso: BAND, BEOR, BIAND, BIEOR, BOR, LDBT, STBT

-31 -

BIT (8Bit)
Bit Test Accumulator A or B with Memory Byte Value
TEMP « r AND (M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
BITA 85 2 2| 95| 4/3| 2| A5 4+ | 2+| B5 | 5/4| 3
BITB C5 2 2| D5 | 4/3| 2| E5 4+ | 2+| F5 | 5/4| 3
E FH I N2ZVC
t]11]0

These instructions logicall AND the contents of a byte in memory with either
AccumulatorA or B. The 8-bit result is tested to set or clear the approprigs th the
CC raister Neither the accumulator nor the memory byte are neatifi

The Najative flag is set equal to bit 7 of the resultirggue.

The Zero fag is set if the resultingalue vas zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

The BIT instructions are used for testing bits. Consider thenwipexample:
ANDA #%00000100 ;Sets Z flag if bit 2 is not set

BIT instructions difer from AND instructions only in that tlyedo not modify the
specifed accumulator

SeeAlso: AND (8-bit), BITD, BITMD

-32 -

BITD

Bit Test Accumulator D with Memory Word Value
TEMP ~ ACCD AND (M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM oP | ~ # | OP | ~ # | oP | ~ # | oP | ~ #
BITD 1085| 5/4 | 4 | 1095 7/5| 3 |10A5|7+/6+ 3+|10B5| 8/6| 4
EFHI NZVC
t1t|0

The BITD instruction logicallyANDs the contents of a double-bytalwe in memory
with the contents oAccumulator D.The 16-bit result is tested to set or clear the
appropriate #igs in the CC gister NeitherAccumulator D nor the memory bytes are
modified.

The Naative flag is set equal to bit 15 of the resultirajue.

The Zero fag is set if the resultingalue was zero; cleared otherwise.
The Oerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

The BITD instruction diiers fromANDD only in thatAccumulator D is not modidid.

SeeAlso: ANDD, BIT (8-bit), BITMD

-33-

BITMD

Bit Test the MD Register with an Immediate Value

CC.Z « (MD.IL AND IMM.6 =0) AND (MD./0 AND IMM.7 =0)
MD.IL' < MD.ILAND IMM.6

MD./0' < MD./0O AND IMM.7

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BITMD #i8 IMMEDIATE 113C 4 3

E FHI N 2Z V C

!

This instruction logicallyANDs the tw most-signiftant bits of the MD mgister (the
Divide-by-Zeo andlllegal Instructionstatus bits) with the twwmost-signiftant bits of
the immediate operandhe Z fag in the CC mgister is set if theAND operation
produces a zero result, otherwise Z is cleared. No other condition agdafe décted.
The BITMD instruction also clears those status bits in the Mjter which correspond
to '1' bits in the immediate operanthe \alues of bits 0 through 5 in the immediate
operand hee no releance and do not faict the operation of the BITMD instruction in

ary way.

The BITMD instruction preides a method to test th&ivide-by-Zeo (/0) andlllegal
Instruction (IL) status bits of the MD gaster after an lllgal Instruction Exception has
occurred At most, only one of theseafjs will be set, indicating which condition caused
the exception. Since the status bit(s) tested are also cleared by this instruction, you ca
only test for each condition once.

Bits O through 5 of the MD ggster are neither tested nor cleared by this instruction.
Therefore BITMD cannot be used to determine or change the cuxesnit®n mode of
the CPU. See‘Determining the 6309 Ecution Mod& on pagel44 for more
information on this topic.

The fgure belav shavs the layout of the MD ster:

7 6 5 4 3 2 1 0
/0 | IL FM |NM

SeeAlso: LDMD

-34 -

BLE

Branch If Less than or Equal to Zero

IF (CC.N #CC.V)OR (CC.Z = 1) then PC’ — PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
BLE address RELATIVE 2F 3 2
E FH I N 2z V C

This instruction performs a rela#i branch if the &lue of the Zero (Z) #lg is 1, OR if the
values of the Ngative (N) and Oerflow (V) flags are not equal. If the N avidlags hae
the same alue and the Z dlg is not set then the CPU continuasaceaiting the net
instruction in sequence. None of the Condition Codmysfl are décted by this
instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
BLE instruction will branch if the sourceale was less than or equal to the original
destination glue.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BLE instruction bytes hee been fetched) with the 8-bit da~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BLE instruction. Iferleange is
required then theBLE instruction may be used instead.

SeeAlso: BGT, BLS, LBLE

-35 -

BLO

Branch If Lower
IF CC.C #0then PC’ « PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BLO address RELATIVE 25 3 2

E FHI N 2Z V C

This instruction tests the Carradl in the CC rgister and, if it is set (1), causes a rekti
branch. If the Carry #lg is 0, the CPU continuexezuting the ne instruction in
sequence. None of the Condition Codgél are dé&cted by this instruction.

When used follwing a subtract or compare of unsigned binaajues, the BLO
instruction will branch if the sourcealue was laver than the original destinatioalue.

BLO is generally not useful folaing INC, DEC, LD, ST off ST instructions since none
of those dkct the Carry #g.

BLO is an alternate mnemonic for the BCS instruction. Both produce the same objec
code.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BLO instruction bytes hee been fetched) with the 8-bit #a~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BLO instruction. Ifearlaange is
required then theBLO instruction may be used instead.

SeeAlso: BHS, BLT, LBLO

- 36 -

BLS

Branch If Lower or Same

IF(CC.Z #0)OR(CC.C #0)then PC’ « PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
BLS address RELATIVE 23 3 2
E FH I N Z V C

This instruction tests the Zero (Z) and Carry (@y4l in the CC gaster and, if either are
set, causes a relad branch. If both the Z and s are clear then the CPU continues
executing the ne instruction in sequence. None of the Condition Caalgsfhre décted

by this instruction.

When used follwing a subtract or compare of unsigned binaalues, the BLS
instruction will branch if the sourcealue was laver than or the same as the original
destination alue.

BLS is generally not useful foNang INC, DEC, LD, ST off ST instructions since none
of those dect the Carry #g.

The branch address is calculated by adding the curatund of the PC gaster (after the
BLS instruction bytes he& been fetched) with the 8-bit @a~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BLS instruction. i§erleange is
required then theBLS instruction may be used instead.

SeeAlso: BHI, BLE, LBLS

-37 -

BLT

Branch If Less Than Zero
IF CC.N #CC.V then PC’ « PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BLT address RELATIVE 2D 3 2

E FHI N 2Z V C

This instruction performs a relaé branch if the alues of the Ngative (N) and Oerflow
(V) flags are not equal. If the N avdlags hae the samealue then the CPU continues
executing the ne instruction in sequence. None of the Condition Caalgsfhre décted
by this instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
BLT instruction will branch if the sourceale was less than the original destination
value.

The branch address is calculated by adding the curatund of the PC gaster (after the
BLT instruction bytes ha been fetched) with the 8-bit da-complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of th& Bistruction. If a lager range is
required then theBL T instruction may be used instead.

SeeAlso: BGE, BLO, LBLT

- 38 -

BMI

Branch If Minus
IF CC.N #0 then PC’ « PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BMI address RELATIVE 2B 3 2

E FHI N 2Z V C

This instruction tests the Native (N) flag in the CC rgister and, if it is set (1), causes a
relatve branch. If the N 8lg is 0, the CPU continuegezuting the ne instruction in
sequence. None of the Condition Codgél are décted by this instruction.

When used folleving an operation on signed @a-complement) binaryalues, the BMI
instruction will branch if the resultingalue is ngative. It is generally preferable to use
the BLT instruction follaving such an operation because the sign bit mayvadidndue
to a twos-complement\eerflow.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BMI instruction bytes hae been fetched) with the 8-bit da~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BMI instruction. Ifardaange is
required then theBMI instruction may be used instead.

SeeAlso: BLT, BPL, LBMI

-39-

BNE
Branch If Not Equal to Zero

IF CC.Z =0 then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BNE address RELATIVE 26 3 2
E FHI N Z V C

This instruction tests the Zeradl in the CC mgister and, if it is clear (0), causes a
relatve branch. If the Z 8lg is set, the CPU continueseeuting the ne instruction in
sequence. None of the Condition Cocdgél are décted by this instruction.

When used folleving almost an instruction that produces, tests orves a alue, the
BNE instruction will branch if thatalue is not equal to zero. In the case of an instruction
that performs a subtract or compare, the BNE instruction will branch if the s@lvee v
was not equal to the original destinatiaiue.

BNE is generally not useful folaing a CLR instruction since the 4§ is alvays set.

The following instructions produce or me values, it do not dect the Z fag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the curaéue of the PC gaster (after the
BNE instruction bytes ha& been fetched) with the 8-bit @#a~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BNE instruction. ijerleange is
required then theBNE instruction may be used instead.

SeeAlso: BEQ, LBNE

-40 -

BOR

Logically OR Memory Bit with Register Bit

6309 ONLY

r.dstBit’ ~ r.dstBit OR (DPM).srcBit
SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BOR r,sBit,dBit,addr DIRECT 1132 716 4

The BOR instruction logically ORs thalue of a speciéd bit in either thé\, B or CC

registers with a specdd bit in memoryThe resulting &lue is placed back into the
register bit. None of the Condition Codeadk are décted by the operation unless CC is

specifed as the gster in which case only the destination bit may decéd.

Accumulator A

Memory Location $0040

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 O
ofoflolo|1]0]|0]0] $08 1/1]olololal1]0]| $c6
l OR |1 |= |
oloflolol1]0]1]0] $0A BOR A 6,1, $40

The figure abwe shavs an @ample of the BOR instruction where bit 1JAsfcumulatorA
is ORed with bit 6 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operandsdestination egister, souice bit destination bitsource addess

The usefulness of the BOR instruction is limited by et that only DirecAddressing
Is permitted. Since the Condition Codagi are not &cted by the operation, additional

instructions would be needed to test the result for conditional branching.

The object code format for the BOR instruction is:

$11

$32 POSTBYTE

ADDRESS LSB

See the description of tHRAND instruction onpage20 for details about the postbyte

format used by this instruction.

SeeAlso: BAND, BEOR, BIAND, BIEOR, BIOR, LDBT, STBT

-41 -

BPL
Branch If Plus

IF CC.N =0 then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BPL address RELATIVE 2A 3 2
E FHI N 2Z V C

This instruction tests the Native (N) flag in the CC rgister and, if it is clear (0), causes
a relatve branch. If the N #lg is set, the CPU continueseeuting the ne instruction in
sequence. None of the Condition Codgdl are décted by this instruction.

When used follving an operation on signed (@a-complement) binaryalues, the BPL
instruction will branch if the resultingalue is positie. It is generally preferable to use
the BGE instruction follwing such an operation because the sign bit mayvadidrdue
to a twos-complement\eerflow.

The branch address is calculated by adding the curatund of the PC gaster (after the
BPL instruction bytes h& been fetched) with the 8-bit da-complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BPL instruction. I§erleange is
required then theBPL instruction may be used instead.

SeeAlso: BGE, BMI, LBPL

-42 -

BRA

Branch Always
PC' « PC+ IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BRA address RELATIVE 20 3 2

E FHI N 2Z VC

This instruction causes an unconditional reatbranch. None of the Condition Code
flags are décted.

The BRA instruction is similar in function to the JMP instruction in thatnbgb causes
execution to be transferred to théesfive address speafil by the operandhe primary
difference is that BRA uses the Ralathddressing mode which ails the code to be
position-independent.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BRA instruction bytes ha been fetched) with the 8-bit #a-complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BPL instruction. I§erleange is
required then theBRA instruction may be used instead.

SeeAlso: BRN, JMP, LBRA

-43 -

BRN

Branch Never

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BRN address RELATIVE 21 3 2

E FH I N2z V C

This instruction is essentially a no-operation; that is, the CREriwanchesui merely
adwances to the m¢ instruction in sequence. No Condition Codefl are décted. BRN
is efectively the equialent of BRA *+2

The BRN instruction pnades a 2-byte no-op that consumesus tycles, whereas NOP
IS a single-byte instruction that consumes either 1 aisirles. In addition, there is the
LBRN instruction which preides a 4-byte no-op that consumeaus tycles.

Since the branch is wer talen, the second byte of the instruction does notesary
purpose and may containyamalue.This permits an optimization technique in which a
BRN opcode can be used to skigep some other single byte instruction. In this
technique, the second byte of the BRN instruction contains the opcode of the instructiol
which is to be skippedihe two code gamples shan belav both perform identically

The diference is that Example 2 uses a BRN opcode to reduce the code size by one byt

Example 1 - coventional:
CMPA #3$40

BLO @1

SUBA #$20

BRA @2 ; SKIP NEXT INSTRUCTION
@1 CLRA
@2 STA RESULT

Example 2 - use BRN opcode ($21) to reduce code size:

CMPA #$40

BLO @1

SUBA #$20

FCB $21 ; SKIP NEXT INSTRUCTION
@1 CLRA

STA RESULT

SeeAlso: BRA, NOP, LBRN

-44 -

BSR

Branch to Subroutine
S «S-2
PC’' « PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
BSR address RELATIVE 8D 716 2

E FHI N 2Z V C

This instruction pushes thalue of the PC ggaster (after the BSR instruction bytes/ba
been fetched) onto the hardwe stack and then performs an unconditional welati
branch. None of the Condition Codadt are décted.

By pushing the PCalue onto the stack, the called subroutine can "return” to this address
after it has completed.

The BSR instruction is similar in function to the JSR instructibhe signifcant
difference is that BSR uses the Rekatddressing mode which implies that both the
BSR instruction and the called subroutine may be contained in relocatable code, so lon
as both are contained in the same module.

The branch address is calculated by adding the curaéund of the PC gaster (after the
BSR instruction bytes ka been fetched) with the 8-bit da-complement alue
contained in the second byte of the instructibme range of the branch destination is
limited to -126 to +129 bytes from the address of the BSR instruction. ex laange is
required then theEBSR instruction may be used instead.

SeeAlso: JSR, LBSR, RIS

-45 -

BVC

Branch If Overflow Clear

IF CC.V = 0 then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BVC address RELATIVE 28 3 2
E FHI N 2Z VC

This instruction tests the @xflow (V) flag in the CC rgister and, if it is clear (0), causes
a relatve branch. If th&/ flag is set, the CPU continueseeuting the net instruction in
sequence. None of the Condition Cocdgél are dé&cted by this instruction.

When used folleving an operation on signed @&-complement) binaryalues, the BVC
instruction will branch if there as no @erflow.

The branch address is calculated by adding the curaéue of the PC gaster (after the
BVC instruction bytes he&e been fetched) with the 8-bit @a-complement alue
contained in the second byte of the instructibme range of the branch destination is
limited to -126 to +129 bytes from the address of the BVC instruction. I§erlaange is
required then theBVC instruction may be used instead.

SeeAlso: BVS, LBVC

- 46 -

BVS

Branch If Overflow Set

IF CC.V #0then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
BVS address RELATIVE 29 3 2
E FHI N 2Z V C

This instruction tests the @xflow (V) flag in the CC rgister and, if it is set (1), causes a
relatve branch. If th&/ flag is clearthe CPU continueskecuting the ne instruction in

sequence. None of the Condition Codgél are dé&cted by this instruction.

When used folleing an operation on signed @&~complement) binaryalues, the BVS

instruction will branch if anerflow occurred.

The branch address is calculated by adding the curaéue of the PC gaster (after the
BVS instruction bytes h& been fetched) with the 8-bit ¢#a~complement alue
contained in the second byte of the instructibime range of the branch destination is
limited to -126 to +129 bytes from the address of the BVS instruction. i§erleange is

required then theBVS instruction may be used instead.

SeeAlso: BVC, LBVS

-47 -

C LR (accumulator)

Load Zero into Accumulator

r «0
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
CLRA INHERENT 4F 2/1 1
CLRB INHERENT 5F 2/1 1
CLRD INHERENT 104F 3/2 2
CLRE INHERENT 114F 3/2 2
CLRF INHERENT 115F 3/2 2
CLRW INHERENT 105F 3/2 2

CLRD CLRE CLRF and CLRWare aailable on 6309 only

E FH I N2z V C
0|0

Each of these instructions clears (sets to zero) the smkaidcumulatoiThe Condition
Code fhgs are also modéd as follavs:

The Najative flag is cleared.
The Zero fag is set.

The Owerflow flag is cleared.
The Carry f&g is cleared.

O<NZ

Clearing the Q accumulator can be accomplishedkbégwting both CLRD and CL\A.

To clear ag of the Ind& Registers (XY, U or S), you can use either an Immediate Mode
LD instruction oy on 6309 processors ong@TFR or EXG instruction which spe@
the Zero rgister (0) as the source.

The CLRA and CLRB instructions prole the smallestatest vy to clear the Carry
flag in the CC rgister

SeeAlso: CLR (memory) LD

-48 -

C LR (memory)

Store Zero into a Memory Byte

(M) <0
SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
CLR OF | 6/5| 2 | 6F 6+ | 2+| 7TF | 7/6| 3
EFH I NZVC
0 0|0

This instruction clears (sets to zero) the byte in memory at tfectizé Address
specifed by the operandhe Condition Codedlgs are also modéd as follavs:

The Najative flag is cleared.
The Zero fag is set.

The Owerflow flag is cleared.
The Carry fag is cleared.

O<NZ

The CPU performs a Read-Modify-Write sequence when this instructizedsted and
is therefore shwer than an instruction which only writes to memMyghen more than
one byte needs to be cleared, you can optimize for speadtidaring an accumulator
and then using ST instructions to clear the memory bytks. folloving examples
illustrate this optimization:

Executes in 21ycles (NM=0):

CLR $200 ; 7 cycles
CLR $210 ; 7 cycles
CLR $220 ; 7 cycles
Adds one additional code bytayttsares 4 gcles:
CLRA ; 2 cycles
STA $200 ; 5 cycles
STA $210 ; 5 cycles
STA $220 ; 5 cycles

SeeAlso: CLR (accumulaton)ST

-49 -

CMP @Bi)
Compare Memory Byte from 8-Bit Accumulator
TEMP « r-(M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | OP ~ # | op ~ # | OP ~ #
CMPA 81 2 2| 91| 4/3| 2| A1 4+ | 2+| B1 | 5/4| 3
CMPB C1 2 2| D1| 4/3| 2| E1 4+ | 2+| F1 | 5/4| 3
CMPE 1181 3 3 |1191| 5/4 | 3 |11A1| 5+ | 3+]|11B1| 6/5| 4
CMPF 11C1| 3 3 |11D1| 5/4 | 3 |11E1| 5+ | 3+]|11F1| 6/5| 4

CMPEand CMPF are @ailable on 6309 only

E FHI N 2Z V C

~ OB B O

These instructions subtract the contents of a byte in memory fronaltleecontained in
one of the 8-bit accumulators (A,B,E,F) and set the Condition Codes accardingly
Neither the memory byte nor the accumulator are nemtlifi

The afect on the Half-Carry #lg is undefied for these instructions.

The Najative flag is set equal to thele of bit 7 of the result.

The Zero fag is set if the resultingalue is zero; cleared otherwise.

The Ovwerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry f&g is set if a borm into bit-7 was needed; cleared otherwise.

O< NZIT

The Compare instructions are usually used to set the Condition Gaepitior to
executing a conditional branch instruction.

The 8-bit CMP instructions performxactly the same operation as the 8-bit SUB
instructions, with the xxeption that the alue in the accumulator is not changed. Note
that since a subtraction is performed, the Caay #ctually represents a Bam.o

SeeAlso: CMP (16-bit), CMPR

-50 -

CMP (@6 Bit)

Compare Memory Word from 16-Bit Register
TEMP « r-(M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS op| ~ |#|oP| ~ |#]|]orP| ~ |#|oP| ~ |#
CMPD 083 | 5/4| 4| 093| 7/5| 3 |OA3 |7+/6+43+|0B3| 8/6| 4
CMPS 18C| 5/4| 4 |19C| 7/5| 3 |1AC |7+/64 3+|1BC| 8/6| 4
CMPU 183 | 5/4| 4|1 193| 7/5| 3 |1A3 |7+/64 3+|1B3 | 8/6| 4
CMPW 081 | 5/4| 4| 091| 7/5| 3 |OAl |7+/6+43+|0B1| 8/6| 4
CMPX 8C | 4/3| 3| 9C | 6/4| 2| AC |6+/5| 2.| BC | 7/5| 3
CMPY 08C| 5/4| 4]109C| 7/5| 3 |OAC |7+/6| 3. |0BC| 8/6| 4

CMPWIs available on 6309 only

E FH I N 2z V C

OB B O

These instructions subtract the contents of a double-bite in memory from thealue
contained in one of the 16-bit accumulators (D,W) or one of thexA8tdek rgisters
(X,Y,U,S) and set the Condition Codes accordinijlgither the memory bytes nor the
register are modiéd unless an auto-increment / auto-decrement addressing mode is use
with the same gastet

The Half-Carry fag is not d@kcted by these instructions.

The Naative flag is set equal to thele of bit 15 of the result.

The Zero fag is set if the resultingalue is zero; cleared otherwise.

The Owerflow flag is set if anwerflow occurred; cleared otherwise.

The Carry fag is set if a borm into bit 15 was needed; cleared otherwise.

O< NZI

The Compare instructions are usually used to set the Condition Gayepitior to
executing a conditional branch instruction.

The 16-bit CMP instructions for accumulators perfonaatly the same operation as the
16-bit SUB instructions, with thexeeption that the alue in the accumulator is not

changed. Note that since a subtraction is performed, the Cagradtually represents a
Borrow.

SeeAlso: CMP (8-bit), CMPR

-51 -

CMPR

Compare Source Register from Destination Register
TEMP « r1-r0

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
CMPR r0O,r1 IMMEDIATE 1037 4 3

E FHI N 2Z VC

OB B O

The CMPR instruction subtracts the contents of a sougistee from the contents of a
destination rgister and sets the Condition Codes accordinglgither rgister is
modified.

The Half-Carry fag is not dected by this instruction.

The Najative flag is set equal to thele of the high-order bit of the result.

The Zero fag is set if the resultingalue is zero; cleared otherwise.

The Ovwerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry fag is set if a borm into the high-order bit as needed; cleared otherwise.

O< NZIT

Any of the 6309 rgisters &cept Q and MD may be speeifi as the source operand,
destination operand or both;vever specifying the PC gester as either the source or
destination produces undafd results.

The CMPR instruction will perform either an 8-bit or 16-bit comparison according to the
size of the destination gester When rgjisters of diferent sizes are spe@t, the source

will be promoted, demoted or substituted depending on the size of the destination and ¢
which specift 8-bit ragister is iwvolved. See“6309 InterRegister Operatioris on
pagel43for further details.

The Immediate operand for this instruction is a postbyte which uses the same format &
that used by th&FR and EXG instructions. See the description offthR instruction
starting orpagel37 for further details.

SeeAlso: ADD (8-bit), ADD (16-bit)

-52-

CO M (accumulator)

Complement Accumulator

r < r
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
COMA INHERENT 43 2/1 1
COMB INHERENT 53 2/1 1
COMD INHERENT 1043 3/2 2
COME INHERENT 1143 3/2 2
COMF INHERENT 1153 3/2 2
COMW INHERENT 1053 3/2 2

COMDCOMECOMFand COMWare &ailable on 6309 only

E FH I N Z V C
tjt|0]1

Each of these instructions change tladug of the specdid accumulator to that of st’
logical complement; that is each 1 bit is changed to a 0, and each 0 bit is changed to a
The Condition Codedlgs are also moddd as follavs:

The Naative flag is set equal to thewevalue of the accumulators high-order bit.
The Zero fag is set if the e value of the accumulator is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry fag is alvays set.

O<NZ

This instruction performs a ones-complement opera#omwos-complement can be
achieved with the NEG instruction.

Complementing the Q accumulator requinesceiting both COMW and COMD.

The COMA and COMB instructions prole the smallest,aktest \ay to set the Carry
flag in the CC mgister

SeeAlso: COM (memory) NEG

-53-

COM (memory)

Complement a Byte in Memory

M)« (M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED

FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #

COM 03 | 6/5| 2] 63 6+ |2+| 73 | 7/6| 3
E FH I NZVC
tjt|0]1

This instruction changes thalue of a byte in memory to that okifogical complement;
that is each 1 bit is changed to a 0, and each 0 bit is changedThe@ondition Code
flags are also modéd as follovs:

The Naative flag is set equal to thewevalue of bit 7.

The Zero fag is set if the v value is zero; cleared otherwise.
The Oerflow flag is alvays cleared.

The Carry fag is alvays set.

O<NZ

This instruction performs a ones-complement opera#oiwos-complement can be
achieved with the NEG instruction.

SeeAlso: COM (accumulator)NEG

-54 -

CWAI

Clear Condition Code Bits and Wait for Interrupt

CC'" « CCAND IMM

CC' «~ CCORB80 4 (E flag)

Push Onto S Stack: PC,U,Y,X,DP,[W itNm =1],D,CC
Halt Execution and Wait for Unmasked Interrupt

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
CWAI #i8 IMMEDIATE 3C 22 /20 2

This instruction logicalll ANDs the contents of the Condition Codegiséer with the 8-

bit value specifd by the immediate operandhe result is placed back into the
Condition Codes gaster The E fhg in the CC mgister is then set and tleatire machine
state is pushed onto the haate stack (S)The CPU then haltsxecution and \aits for

an unmasé&d interrupt to occurWhen such an interrupt occurs, the CPU resumes
execution at the address obtained from the corresponding inteactot v

You can specify aalue in the immediate operand to clear either or both the | and F
interrupt masks to ensure that the desired interrupt types are enabled. One of tF
following values is typically used for the immediate operand:

$FF = Leave CC unmodified

$EF =Enable IRQ

$BF = Enable FIRQ

$AF = Enable both IRQ and FIRQ

Some assemblers will accept a comma-delimited list of the Condition Code bits to be
cleared as an alternatito the immediatealue. For example:

CWAI |F ; Clear | and F, wait for interrupt

It is important to note that because #@mgire machine state is sta@tt prior to the actual
occurrence of an interrupt, rFIRQ service routine that may bevaked must not
assume that PC and CC are the ondysters that hae been sta@dd.The RIl instruction
will operate correctly in this situation because A\Wets the E #Hg prior to stacking the
CC raister

Unlike SYNC, the C\WI instruction does not place the data and addressds in a
high-impedance state whileawting for an interrupt.

SeeAlso: ANDCC, RTI, SYNC

-55 -

DAA
Decimal Addition Adjust

A4.71 ' « A@B.717 +6IF:

CCC=1

OR:A @717 >9

OR:A .71 >8ANDA (03 >9
A0.3] ' « AJo.3] +6IF:

CCH=1

OR:A [0.31 >9

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
DAA INHERENT 19 2/1 1

E FH I N2z V C

The DAA instruction is used after performing an 8-bit addition of Binary Coded Decimal
values using either theDDA or ADCA instructions. [AA adjusts the &lue resulting
from the binary addition in accumulatédr so that it contains the desired BCD result
instead.The Carry fag is also updated to properly esfl BCD addition.That is, the
Carry flag is set when addition of the most-sigrafit digits (plus ancarry from the
addition of the least-signdant digits) produces alue greater than 9.

The Half-Carry fag is not dected by this instruction.

The Naative flag is set equal to thewevalue of bit 7 ilPAccumulatorA.

The Zero fag is set if the e value ofAccumulatorA is zero; cleared otherwise.
The afect this instruction has on the &¥low flag is undehed.

The Carry f&g is set if the BCD addition produced a carry; cleared otherwise.

O< NZIT

The code belv adds the BCDalues of 64 and 27, producing the BCD sum of 91.:

LDA #$64
ADDA #$27 ; Produces binary result of $8B
DAA ; Adjusts A to $91 (BCD result of 64 + 27)

DAA is the only instruction which is t#cted by the &lue of the Half Carry &ig (H) in
the Condition Codes gester

SeeAlso: ADCA, ADDA

-56 -

DEC (accumulator)

Decrement Accumulator

r «r-1
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
DECA INHERENT 4A 2/1 1
DECB INHERENT 5A 2/1 1
DECD INHERENT 104A 3/2 2
DECE INHERENT 114A 3/2 2
DECF INHERENT 115A 3/2 2
DECW INHERENT 105A 3/2 2

DECDDECE DECF and DECWare aailable on 6309 only

E FH I N2z V C

OB R

These instructions subtract 1 from the spedificcumulatoiThe Condition Code dlgs
are afected as follas:

The Naative flag is set equal to thewevalue of the accumulators high-order bit.

The Zero fag is set if the e value of the accumulator is zero; cleared otherwise.

The Owerflow flag is set if the originalalue was 8Qg (8-bit) or 800Q, (16-bit); cleared otherwise.
The Carry f&g is not dected by these instructions.

O<NZ

It is important to note that the DEC instructions do nfecafthe Carry #ig. This means
that it is not alvays possible to optimize code by simply replacing a ISEiBinstruction
with a corresponding DECBecause the DEC instructions do ndeetf the Carry #g,
they can be used to implement loop counters within multiple precision computations.

When used to decrement an unsignetl®, only the BEQ and BNE branches will
always behee as &pected.When operating on a signedalue, all of the signed
conditional branch instructions will beleas &pected.

SeeAlso: DEC (memory) INC, SUB

-57 -

DEC (memory)

Decrement a Byte in Memory
(M) «M)-1

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ oP ~ # | OP ~
DEC OA | 6/5 6A 6+ |2+l 7A | 7/6
E FH I N2ZVC

This instruction subtracts 1 from thalue contained in a memory byfhe Condition

Code fhgs are also modéd as follavs:

N The Najative flag is set equal to thewesalue of bit 7.
Z The Zero fag is set if the e value of the memory byte is zero; cleared otherwise.

V The Owerflow flag is set if the originalalue of the memory byteag $80; cleared otherwise.
C The Carry fag is not dected by this instruction.

Because the DEC instruction does né¢ctfthe Carry #g, it can be used to implement a

loop counter within a multiple precision computation.

When used to decrement an unsignetle, only the BEQ and BNE branches will
always behee as gpected.When operating on a signedalue, all of the signed

conditional branch instructions will beleas &pected.

SeeAlso: DEC (accumulator)INC, SUB

-58 -

DIVD

Signed Divide of Accumulator D by 8-bit value in Memory
ACCB’ ~ ACCD + (M)
ACCA’ ~ ACCD MOD (M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
DIVD 118D| 25* | 3 [119D|27/26% 3 |11AD| 27+* | 3+ |11BD| 28/27% 4

* If a two’s complementwerflow occurs, the DIVD instruction uses onavé ¢/cle than what is shwn in the
table. If a rangeerflow occurs, DIVD uses 13\eer g/cles than what is sk in the table.

E FH I N 2Z V C

O I B

This instruction diides the 16-bit alue inAccumulator D (the didend) by an 8-bit
value contained in a memory byte (theislor). The operation is performed usinga\s
complement binary arithmetidhe 16-bit result consists of the 8-bit quotient placed in
Accumulator B and the 8-bit remainder placedAiccumulatorA. The sign of the
remainder is aays the same as the sign of thaaknd unless the remainder is zero.

N The Naative flag is set equal to thewevalue of bit 7 inrAccumulator B.

Z The Zero fag is set if the e value ofAccumulator B is zero; cleared otherwise.
V The Ovwerflow flag is set if an\eerflow occurred; cleared otherwise.

C The Carry fhg is set if the quotient iskccumulator B is odd; cleared ifen.

When the wlue of the speci#d memory byte (&lisor) is zero, aDivision-By-Zeo
exception is triggeredThis causes the CPU to set bit 7 in the MBDister stack the
machine state and jump to the addressridkom the lllgal Instruction ector at $FFFO.

Two types of gerflow may occur when the DIVD instruction igexuted:

* Atwo’s complementwerflow occurs when the sign of the resulting quotient is
incorrect. lor example, when 300 isdded by 2, the result of 150 can be represented
in 8 bits only as an unsignedlue. Since DIVD performs a signed operation, it
interprets the result as -106 and sets thgalilee (N) and Oerflow (V) flags.

* Arange @erflow occurs when the quotient isd@r than can be represented in 8 bits.
For example, when 900 isdded by 3, the result of 30&eeeds the 8-bit range. In
this case, the CPU aborts the operatiorviteathe accumulators unmodié while
setting the Oerflow flag (V) and clearing the N, Z and @dk.

SeeAlso: DIVQ

-59 -

DIVQ

Signed Divide of Accumulator Q by 16-bit value in Memory
ACCW’' ~ ACCQ = (M:M+1)
ACCD’ ~ ACCQ MOD (M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
DIVQ 118E| 34* | 4 |119E|36/35*% 3 |11AE| 36+* | 3+ |11BE|37/36* 4

* When a rangewerflow occurs, the DIVQ instruction uses 2 ¢/cles than what is sk in the table.

E FH I N2z V C

O B O

This instruction diides the 32-bit &lue inAccumulator Q (the didend) by a 16-bit
value contained in memory (thevidior). The operation is performed using d\&
complement binary arithmeti¢he 32-bit result consists of the 16-bit quotient placed in
AccumulatorW and the 16-bit remainder placed Accumulator D.The sign of the
remainder is abays the same as the sign of thaaknd unless the remainder is zero.

The Naative flag is set equal to thewevalue of bit 15 irAccumulatoiW.

The Zero fag is set if the e value ofAccumulatoV is zero; cleared otherwise.
The Oerflow flag is set if anwerflow occurred; cleared otherwise.

The Carry fag is set if the quotient lkccumulatoW is odd; cleared ifwven.

O<NZ

When the walue of the specdd memory wrd (dvisor) is zero, aDivision-By-Zeo
exception is triggeredThis causes the CPU to set bit 7 in the Mister stack the
machine state and jump to the addreseridkom the lligal Instruction ector at FFFQ.

Two types of werflow are possible when the DIVQ instruction xeeuted:

* Atwo’s complementwerflow occurs when the sign of the resulting quotient is
incorrect. for example, when 80,000 isudded by 2, the result of 40,000 can be
represented in 16 bits only as an unsigredde: Since DIVQ is a signed operation, it
interprets the result as -25,536 and sets tlgate (N) and Oerflow (V) flags.

* Arange werflow occurs when the quotient isd@r than can be represented in 16
bits. For example, when 210,000 iswiiled by 3, the result of 70,00Qeeeds the 16-
bit range. In this case, the CPU aborts the operatiorintpthe accumulators
unmodifed while setting the @xrflow flag (V) and clearing the N, Z and @dk.

SeeAlso: DIVD

-60 -

EIM

Exclusive-OR of Immediate Value with Memory Byte
(M) < (M) OIMM

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
EIM #8;EA 05 6 3| 65 7+ | 3+]| 75 7 4
E FH I NZVC

The EIM instruction eclusively-ORs the contents of a byte in memory with an 8-bit
immediate alue. The resulting @lue is placed back into the designated memory
location.

N The Naative flag is set equal to thewevalue of bit 7 of the memory byte.

Z The Zero fag is set if the e value of the memory byte is zero; cleared otherwise.
V The Owerflow flag is cleared by this instruction.

C The Carry fg is not dected by this instruction.

EIM is one of the instructions added to the 6309 whichaaltmgical operations to be
performed directly in memory instead ofvirey to use an accumulatdt takes three
separate instructions to perform the same operation on a 6809:

6809 (6 instruction bytes; 12ycles)

LDA #B3F
EORA 4U
STA 4,U
6309 (3 instruction bytes; 8ycles)
EIM #$3F;4,U

Note that the assembler syntax used for the EIM operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immedia
operand and the address operand.

The object code format for the EIM instruction is:
OPCODE |IMMED VALUE | ADDRESS/INDEX BYTE(S)

SeeAlso: AIM , OIM, TIM

-61 -

EOR (8 Bit)

Exclusively-OR Memory Byte with Accumulator A or B
r «r 0O(M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
EORA 88 2 2 | 98 | 4/3| 2| A8 4+ | 2+| B8 | 5/4| 3
EORB C8 2 2 | D8 | 4/3| 2| E8 4+ | 2+| F8 | 5/4| 3
E FH I NZVC
t11]0

These instructions xelusively-OR the contents of a byte in memory with either
AccumulatorA or B. The 8-bit result is then placed in the spedfaccumulator

The Naative flag is set equal to thewevalue of bit 7 of the accumulator

The Zero fag is set if the e value of the accumulator is zero; cleared otherwise.
The Owerflow flag is cleared by this instruction.

The Carry fag is not dected by this instruction.

O< NZ

The EOR instruction produces a result containing '1' bits in the positions where the
corresponding bits in the twoperands hee different \alues. Exclusie-OR logic is often
used in parity functions.

EOR can also be used to perform "bipyping"” since a '1' bit in the source operand will
invert the \alue of the corresponding bit in the destination operamde@mple:

EORA #%00000100 ‘Invert value of bit 2 in Accumulator A

SeeAlso: BEOR, BIEOR, EIM , EORD, EORR

-62 -

EORD

Exclusively-OR Memory Word with Accumulator D
ACCD’ «~ ACCD 0O (M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM oP | ~ # | OP | ~ # | oP | ~ # | oP | ~ #
EORD 1088| 5/4 | 4 [1098 7/5 | 3 |10A8|7+/6+4 3+|10B8| 8/6 | 4
EFHI NZVC

The EORD instructionxlusiely-ORs the contents of a double-bysue in memory
with the contents ohccumulator D.The 16-bit result is placed back itocumulator D.

The Najative flag is set equal to thewevalue of bit 15 oAccumulator D.

The Zero fag is set if the e value of theAccumulator D is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

The EORD instruction produces a result containing '1' bits in the positions where the
corresponding bits in the twoperands he different \alues. Exclusie-OR logic is often
used in parity functions.

EOR can also be used to perform "bipyping"” since a '1' bit in the source operand will
invert the \alue of the corresponding bit in the destination operamde@mple:

EORD #$8080 ‘Invert values of bits 7and 15in D

SeeAlso: EOR (8-bit), EORR

-63 -

EORR

Exclusively-OR Source Register with Destination Register
r’ <rl 0Or0

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
EORR r0,r1 IMMEDIATE 1036 4 3

E FH I N 2Z V C
1] t]0

The EORR instruction xelusively-ORs the contents of a sourcegister with the
contents of a destinationgister The result is placed into the destinatiogiset

The Najative flag is set equal to thele of the resuls’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

All of the 6309 rgisters &cept Q and MD can be speeffi as either the source or
destination; haever specifying the PC gester as either the source or destination
produces undefed results.

The EORR instruction produces a result containing '1' bits in the positions where the
corresponding bits in the twoperands hee different \alues. Exclustie-OR logic is often
used in parity functions.

See“6309 InterReajister Operatiorison pagel43 for details on ha this instruction
operates when gesters of diferent sizes are speat.

The Immediate operand for this instruction is a postbyte which uses the same format &
that used by th&FR and EXG instructions.df details, see the description of fhiER
instruction.

SeeAlso: EOR (8-bit), EORD

-64 -

EXG

Exchange Registers
N orl

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
EXG r0,r1 IMMEDIATE 1E 8/5 2

This instruction rchanges the contents ofdwagisters. None of the Condition Code
flags are décted unless CC is one of thgisters iwvolved in the gchange.

Program fbw can be altered by specifying PC as one of tgesters When this occurs,
the other rgister is set to the address of the instruction thatvisliBXG.

Any of the 6309 rgisters &cept Q and MD may be used in thecleangeThe order in
which the tvo reggisters are spec#d is irrel@ant. For ekample, EXG A,B will operate
exactly the same a&EXG B,A although the object code will be féifent.

When an 8-bit rgister is &changed with a 16-bit gester the contents of the 8-bit
register are placed into both habsof the 16-bit master Corversely only the uppebpr
the laver half of the 16-bit mgister is placed into the 8-bitgister As illustrated in the
diagram belw, which half is transferred depends on which 8-lgtster is ivolved.

bl5 b8 b7 bo
16-bit register (D, XY, U, S,PCW,V): | MSB [LsB |

8-bitregister | A | | B | | E | | F | | pp | | cc |

The EXG instruction requires a postbyte in which the tegisters that are wolved are
encoded into the upper andver nibbles.

T T T T T T Code Register Code Register
POSTBYTE] b7 | | | b4| b3 | | | b0 0000 D 1000 A
| T | 0001 X 1001 B
0010 Y 1010 CcC
0011 U 1011 DP
0100 S 1100 0
ro 0101 PC 1200 0
ri Shaded encodings arevitid 0110 w 1110 E
on 6809 microprocessors 0111 V 1111 F

SeeAlso: EXG (6809 implementation TFR

- 65 -

EXG

Exchange Registers
N orl

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
EXG rO,r1 IMMEDIATE 1E 8 2

This instruction rchanges the contents ofdwagisters. None of the Condition Code
flags are décted unless CC is one of thgisters iwvolved in the gchange.

Program fbw can be altered by specifying PC as one of tgesters When this occurs,
the other rgister is set to the address of the instruction thatvisliBXG.

Any of the 6809 rgisters may be used in thechangeWhen echanging rgisters of the
same size, the order in which yhare speci@d is irreleant. For example, EXG A,B
will operate gactly the same aEXG B,A although the object code will be féifent.

When echanging rgisters of diferent sizes, a 6809 operatedatiéntly than a 6309.
The 8-bit rgister is alvays exchanged with the {@er half of the 16-bit igister and the
the upper half of the 16-bitgester is then set to thele shan in the table belw.

Operand Or der | 8-bit Register Used 16-bit Register’ s MSB after EXG
16,8 Any FF,
8,16 A or B FFg*
8,16 CC or DP Same as LSB

*The one &ception is for EXG A,D which producesxactly the same result aEXG A,B

The EXG instruction requires a postbyte in which the tegisters are encoded into the
upper and lwver nibbles.

| | | | | | Code Register Code Register
| | | | 0001 X 1001 B

0010 Y 1010 cC
0011 U 1011 DP
0100 S 1100 invalid

ro 0101 PC 1101 invalid

ri 0110 invalid 1110 invalid
0111 invalid 1111 invalid

If an invalid register encoding is speail for either rgister a constantalue of Fk; or
FFFF; is used for thex@hangeThe invalid register encodings hee valid meanings
on 6309 pocessors, and should bevaided in code intended to run on both CPL.

SeeAlso: EXG (6309 implementation TFR

- 66 -

IN C (accumulator)

Increment Accumulator

' «r+1
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
INCA INHERENT 4C 2/1 1
INCB INHERENT 5C 2/1 1
INCD INHERENT 104C 3/2 2
INCE INHERENT 114C 3/2 2
INCF INHERENT 115C 3/2 2
INCW INHERENT 105C 3/2 2

INCD, INCE, INCF and INCWare &ailable on 6309 only

E FH I N2z V C

Tyttt

These instructions add 1 to the contents of the spdc#ccumulatorThe Condition
Code fhgs are décted as follws:

The Naative flag is set equal to thewevalue of the accumulators high-order bit.

The Zero fag is set if the e value of the accumulator is zero; cleared otherwise.

The Owerflow flag is set if the originalalue was $7H8-bit) or $7FFH16-bit); cleared otherwise.
The Carry f&g is not dected by these instructions.

O<NZ

It is important to note that the INC instructions do nécfthe Carry #ig. This means
that it is not alvays possible to optimize code by simply replacingADr #1
instruction with a corresponding INC

When used to increment an unsigneadue, only the BEQ and BNE branches will
consistently beha&e as &pected.When operating on a signealue, all of the signed
conditional branch instructions will beleas &pected.

SeeAlso: ADD, DEC, INC (memory)

-67 -

|NC (memory)

Increment a Byte in Memory
M) «M+1

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS OoP ~ # | opP ~ OoP ~ # | OP ~
INC 0C | 6/5 6C 6+ |2+l 7c | 7/6
E FH I NZVC

This instruction adds 1 to the contents of a memory [Gyte.Condition Code dlgs are

also modifed as follovs:

N The Najative flag is set equal to thewesalue of bit 7.
Z The Zero fag is set if the e value of the memory byte is zero; cleared otherwise.

V The Owerflow flag is set if the originalalue of the memory byteag $7F; cleared otherwise.
C The Carry fag is not dected by this instruction.

Because the INC instruction does ndeef the Carry #g, it can be used to implement a

loop counter within a multiple precision computation.

When used to increment an unsigneadue, only the BEQ and BNE branches will
consistently behee as gpected.When operating on a signedlue, all of the signed

conditional branch instructions will beleas &pected.

SeeAlso: ADD, DEC, INC (accumulator)

- 68 -

JMP

Unconditional Jump

PC’ « EA
SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | oP ~ # | oP ~ #
JMP OE | 3/2| 2 | 6E 3+ |2+| 7TE | 4/3| 3
E FHI1 NZVC

This instruction causes an unconditional jump. None of the Condition Cagke dle
affected by this instruction.

The JMP instruction is similar in function to the BRA and LBRA instructions in that it
always causesxecution to be transferred to thefestive address spectil by the
operand.The primary diference is that BRA and LBRA use only the Remti
Addressing mode, whereas JMP uses only the Directxéader Extended modes.

Unlike most other instructions which use the Direct, edeand Extended addressing
modes, the operanchle used by the JMP instruction is thdéeEfive Address itself,
rather than the memory contents stored at that address (unless Indirgicigmslesed).
Here are somexamples:

JMP $4000 ; Jumps to address $4000

JMP [$4000] ; Jumps to address stored at $4000
JMP X ; Jumps to the address in X

JMP B,X ; Jumps to computed address X + B
JMP [B,X] ; Jumps to address stored at X + B
JMP <$80 ; Jumps to address (DP * $100) + $80

Indexed operands are useful in thatyth@ovide the ability to compute the destination
address at run-timéllhe use of an Indirect Ingmg mode is frequently used to call
routines through a jump-table in memory

Using Direct or Extended operands with the JMP instruction shouldvdided in
position-independent code unless the destination address is within non-relocatable coc
(such as a @M routine).

SeeAlso: BRA, JSR, LBRA

- 69 -

JSR

Unconditional Jump to Subroutine

S «S-2
(S:S+1) < PC
PC" « EA
SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP | ~ # | OP | ~ # | oP | ~ # | oP | ~ #
JSR 9D | 7/6| 2 | AD |7+/64#42+| BD | 8/7| 3
EFHI NZVC

This instruction pushes thale of the PC gaster (after the JSR instruction bytevda
been fetched) onto the hardwe stack and then performs an unconditional jump. None of
the Condition Codedlgs are dkcted. By pushing the PGMe onto the stack, the called
subroutine can "return” to this address after it has completed.

The JSR instruction is similar in function to that of the BSR and LBSR instruciibas.
primary diference is that BSR and LBSR use only the Redatiddressing mode,
whereas JSR uses only the Direct, hetkor Extended modes.

Unlike most other instructions which use the Direct, edeand Extended addressing
modes, the operanchle used by the JSR instruction is thée&ive Address itself,
rather than the memory contents stored at that address (unless Indineicigimgslased).
Here are somexamples:

JSR $4000 ; Calls to address $4000

JSR [$4000] ; Calls to the address stored at $4000
JSR X ; Calls to the address in X

JSR [B,X] ; Calls to the address stored at X + B

Indexed operands are useful in thatyth@ovide the ability to compute the subroutine
address at run-timéllhe use of an Indirect Ingimg mode is frequently used to call
subroutines through a jump-table in memory

Using Direct or Extended operands with the JSR instruction should/dided in
position-independent code unless the destination address is within non-relocatable coc
(such as a @M routine).

SeeAlso: BSR, JMP, LBSR, PULS, RTS

-70 -

LBCC
Long Branch If Carry Clear

IF CC.C =0 then PC’ ~ PC+ IMM

SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBCC address RELATIVE 1024 5 (6 if talen) 4

E FHI N 2Z V C

This instruction tests the Carrnyadl in the CC mgister and, if it is clear (0), causes a
relative branch. If the Carrydp is 1, the CPU continueseeuting the ne instruction in
sequence. None of the Condition Codg¥l are décted by this instruction.

When used follwing a subtract or compare of unsigned binaayues, the LBCC
instruction will branch if the sourcealue was higher or the same as the original
destination wlue. For this reason, 6809/6309 assemblers will accept LBHS as an
alternate mnemonic for LBCC.

LBCC is generally not useful fokang INC, DEC, LD, ST ofTST instructions since
none of those &ct the Carry #ig. Also, the LBCC instruction will abays branch

following a CLR instruction and mer branch follaving a COM instruction due to the
way those instructionsfafct the Carry #g.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBCC instruction bytes ha& been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spad@ée smallerfaster BCC
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BCC, LBCS, LBGE

-71 -

LBCS

Long Branch If Carry Set
IF CC.C #0then PC’ ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBCS address RELATIVE 1025 5 (6 if taken) 4

E FHI N 2Z V C

This instruction tests the Carradl in the CC rgister and, if it is set (1), causes a rekti
branch. If the Carry #lg is 0, the CPU continuexezuting the ne instruction in
sequence. None of the Condition Codgél are dé&cted by this instruction.

When used following a subtract or compare of unsigned binagyues, the LBCS
instruction will branch if the sourcealue was laver than the original destinatiomalue.
For this reason, 6809/6309 assemblers will act&hiO as an alternate mnemonic for
LBCS.

LBCS is generally not useful follang INC, DEC, LD, ST ofTST instructions since
none of those &fct the Carry #ig. Also, the LBCS instruction will neer branch
following a CLR instruction andwhys branch follewing a COM instruction due to the
way those instructionsfatct the Carry #g.

The branch address is calculated by adding the curaéund wof the PC gaster (after the
LBCS instruction bytes lva been fetched) with the 16-bit dga-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spad@ée smallerfaster BCS
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BCS, LBCC, LBLT

-72 -

LBEQ

Long Branch If Equal to Zero
IF CC.Z #0then PC ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBEQ address RELATIVE 1027 5 (6 if taken) 4

E FHI N 2Z VC

This instruction tests the Zer@g in the CC mgister and, if it is set (1), causes a rekti
branch. If the Z #ig is 0, the CPU continuegeeuting the ne instruction in sequence.
None of the Condition Codeafyjs are dé&cted by this instruction.

When used folleving almost an instruction that produces, tests orves a @alue, the
LBEQ instruction will branch if thatalue is equal to zero. In the case of an instruction
that performs a subtract or compare, the LBEQ instruction will branch if the s@lwee v
was equal to the original destinaticalwe.

LBEQ is generally not useful folzing a CLR instruction since the Af is alvays set.

The following instructions produce or me values, it do not dect the Z fag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the curaéue of the PC gaster (after the
LBEQ instruction bytes ha& been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadée smallerfaster BEQ
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BEQ, LBNE

-73 -

LBGE

Long Branch If Greater than or Equal to Zero

IF CC.N = CC.V then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBGE address RELATIVE 102C 5 (6 if taken) 4
E FHI N 2Z V C

This instruction tests the gative (N) and Owerflow (V) flags in the CC gaster and, if
both are set OR both are cleeauses a relae branch. If the N and flags do not hae
the same &lue then the CPU continueseeuting the ne instruction in sequence. None
of the Condition Codedls are décted by this instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
LBGE instruction will branch if the sourcalie was greater than or equal to the original
destination glue.

The branch address is calculated by adding the curatund of the PC gaster (after the
LBGE instruction bytes h& been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadde smallerfaster BGE
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BGE, LBHS, LBLT

-74 -

LBGT

Long Branch If Greater Than Zero
IF (CC.N = CC.V) AND (CC.Z = 0) then PC’ — PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBGT address RELATIVE 102E 5 (6 if taken) 4

E FHI N 2Z VC

This instruction tests the Zero (Zadl in the CC mgister and, if it is cleahND the values

of the Nagative (N) and Oerflow (V) flags are equal (both set OR both clear), causes a
relatve branch. If the N and flags do not hae the samealue or if the Z fhg is set then

the CPU continuesxecuting the ne instruction in sequence. None of the Condition
Code fags are décted by this instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
LBGT instruction will branch if the sourcalue was greater than the original destination
value.

The branch address is calculated by adding the curaéuind of the PC gaster (after the
LBGT instruction bytes hee been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to aw location within the 64K address spadée smallerfaster BGT
Instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BGT, LBHI , LBLE

-75 -

LBHI
Long Branch If Higher

IF (CC.Z = 0) AND (CC.C = 0) then PC’ « PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
LBHI address RELATIVE 1022 5 (6 if taken) 4
E FH I N 2z V C

This instruction tests the Zero (Z) and Carry (@y4l in the CC gaster and, if both are
zero, causes a reled branch. If either the Z or Cafis are set then the CPU continues
executing the ne instruction in sequence. None of the Condition Caalgsfhre décted

by this instruction.

When used follwing a subtract or compare of unsigned binagyues, the LBHI
instruction will branch if the sourceale was higher than the original destinatiaiue.

LBHI is generally not useful follwing INC, DEC, LD, ST ofTST instructions since
none of those &ct the Carry #g.

The branch address is calculated by adding the curaéund of the PC gaster (after the

LBHI instruction bytes ha& been fetched) with the 16-bit dg&~complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadée smaller faster BHI
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BHI, LBGT, LBLS

-76 -

LBHS

Long Branch If Higher or Same

IF CC.C =0 then PC’ ~ PC+ IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBHS address RELATIVE 1024 5 (6 if talen) 4
E FHI N 2Z VC

This instruction tests the Carnadl in the CC mgister and, if it is clear (0), causes a
relatve branch. If the Carrydf is 1, the CPU continuegezuting the ne instruction in
sequence. None of the Condition Codgél are dé&cted by this instruction.

When used following a subtract or compare of unsigned binaguss, the LBHS
instruction will branch if the sourcealue was higher or the same as the original
destination glue.

LBHS is generally not useful fokang INC, DEC, LD, ST ofTST instructions since
none of those &ct the Carry #g.

LBHS is an alternate mnemonic for the LBCC instruction. Both produce the same objec
code.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBHS instruction bytes he& been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to aw location within the 64K address spadée smallerfaster BHS
Instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BHS, LBGE, LBLO

-77 -

LBLE

Long Branch If Less than or Equal to Zero

IF (CC.N #CC.V)OR (CC.Z = 1) then PC’ « PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
LBLE address RELATIVE 102F 5 (6 if taken) 4
E FH I N 2z V C

This instruction performs a rela#i branch if the &lue of the Zero (Z) #lg is 1, OR if the
values of the Ngative (N) and Oerflow (V) flags are not equal. If the N avidlags hae
the same alue and the Z dlg is not set then the CPU continuasaceaiting the net
instruction in sequence. None of the Condition Codmysfl are décted by this
instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
LBLE instruction will branch if the sourcealue was less than or equal to the original
destination glue.

The branch address is calculated by adding the curaénd of the PC gaster (after the
LBLE instruction bytes ha been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadé&e smallerfaster BLE
Instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BLE, LBGT, LBLS

-78 -

LBLO

Long Branch If Lower
IF CC.C #0then PC’ ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBLO address RELATIVE 1025 5 (6 if taken) 4

E FHI N 2Z V C

This instruction tests the Carradl in the CC rgister and, if it is set (1), causes a rekti
branch. If the Carry #lg is 0, the CPU continuexezuting the ne instruction in
sequence. None of the Condition Codgél are dé&cted by this instruction.

When used follwing a subtract or compare of unsigned binagyues, the LBLO
instruction will branch if the sourcealue was laver than the original destinatioalue.

LBLO is generally not useful folleing INC, DEC, LD, ST ofTST instructions since
none of those &ct the Carry #g.

LBLO is an alternate mnemonic for the LBCS instruction. Both produce the same objeci
code.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBLO instruction bytes hae been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spad@ée smallerfaster BLO
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BLO, LBHS, LBLT

-79 -

LBLS

Long Branch If Lower or Same

IF(CC.Z #0)OR(CC.C #0)then PC’ « PC + IMM
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
LBLS address RELATIVE 1023 5 (6 if taken) 4
E FH I N Z V C

This instruction tests the Zero (Z) and Carry (@y4l in the CC gaster and, if either are
set, causes a relad branch. If both the Z and s are clear then the CPU continues
executing the ne instruction in sequence. None of the Condition Caalgsfhre décted

by this instruction.

When used follwing a subtract or compare of unsigned binagues, the LBLS
instruction will branch if the sourcealue was laver than or the same as the original
destination alue.

LBLS is generally not useful foleing INC, DEC, LD, ST ofTST instructions since
none of those &ict the Carry #g.

The branch address is calculated by adding the curaéuind of the PC gaster (after the
LBLS instruction bytes heae been fetched) with the 16-bit dga-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadée smallerfaster BLS
Instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BLS, LBHI , LBLE

-80 -

LBLT

Long Branch If Less Than Zero
IF CC.N #CC.V then PC’ ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBLT address RELATIVE 102D 5 (6 if taken) 4

E FHI N 2Z VC

This instruction performs a relaé branch if the alues of the Ngative (N) and Oerflow
(V) flags are not equal. If the N avdlags hae the samealue then the CPU continues
executing the ne instruction in sequence. None of the Condition Caalgsfhre décted
by this instruction.

When used follwing a subtract or compare of signed dsacomplement) alues, the
LBLT instruction will branch if the sourcealue was less than the original destination
value.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBLT instruction bytes ha&e been fetched) with the 16-bit dg&~complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadée smallerfaster BIT
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BLT, LBGE, LBLO

-81 -

LBMI

Long Branch If Minus
IF CC.N #0then PC’ ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBMI address RELATIVE 102B 5 (6 if taken) 4

E FH I N Z V C

This instruction tests the Native (N) flag in the CC rgister and, if it is set (1), causes a
relatve branch. If the N 8lg is 0, the CPU continuegezuting the ne instruction in
sequence. None of the Condition Codgél are décted by this instruction.

When used follwing an operation on signed @&complement) binaryaes, the
LBMI instruction will branch if the resultingalue is ngative. It is generally preferable

to use the LBT instruction follaving such an operation because the sign bit may be
invalid due to a tws-complement\erflow.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBMI instruction bytes hee been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spad@e smallerfaster BMI
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BMI, LBLT, LBPL

-82 -

LBNE
Long Branch If Not Equal to Zero

IF CC.Z =0 then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBNE address RELATIVE 1026 5 (6 if taken) 4
E FHI N 2Z V C

This instruction tests the Zeradl in the CC mgister and, if it is clear (0), causes a
relatve branch. If the Z 8lg is set, the CPU continueseeuting the ne instruction in
sequence. None of the Condition Cocdgél are décted by this instruction.

When used folleving almost an instruction that produces, tests orves a alue, the
LBNE instruction will branch if that alue is not equal to zero. In the case of an
instruction that performs a subtract or compare, the LBNE instruction will branch if the
source @alue was not equal to the original destinatiaiue.

LBNE is generally not useful foleing a CLR instruction since the Af is alvays set.

The following instructions produce or me values, it do not dect the Z fag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the curaéue of the PC gaster (after the
LBNE instruction bytes he been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spaddée smallerfaster BNE
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BNE, LBEQ

-83 -

LBPL
Long Branch If Plus

IF CC.N =0 then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBPL address RELATIVE 102A 5 (6 if taken) 4
E FHI N Z V C

This instruction tests the Native (N) flag in the CC rgister and, if it is clear (0), causes
a relatve branch. If the N #lg is set, the CPU continueseeuting the ne instruction in
sequence. None of the Condition Codgdl are décted by this instruction.

When used follwing an operation on signed @&-complement) binaryaes, the
LBPL instruction will branch if the resultingalue is positie. It is generally preferable

to use the LBGE instruction folldng such an operation because the sign bit may be
invalid due to a tws-complement\erflow.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBPL instruction bytes hae been fetched) with the 16-bit dga-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to aw location within the 64K address spadée smallerfaster BPL
instruction can be used instead when the destination address is within -126 to +129 byt
of the address of the branch instruction.

SeeAlso: BPL, LBGE, LBMI

-84 -

LBRA

Long Branch Always
PC' « PC+IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBRA address RELATIVE 16 5/4 3

E FH I N Z VC

This instruction causes an unconditional reatbranch. None of the Condition Code
flags are décted.

The LBRA instruction is similar in function to the JMP instruction in that wagk
causesecution to be transferred to thdesfive address speafil by the operandhe
primary diference is that LBRA uses the RelatAddressing mode which ails the
code to be position-independent.

The branch address is calculated by adding the curaéund of the PC gaster (after the
LBRA instruction bytes hae been fetched) with the 16-bit dg-complement alue
contained in the second and third bytes of the instruction. Long branch instructions
permit a relatre jump to ag location within the 64K address spatée smallerfaster

BRA instruction can be used when the destination address is within -126 to +129 byte
of the address of the branch instruction.

SeeAlso: BRA, LBRN, JMP

-85 -

LBRN

Long Branch Never

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBRN address RELATIVE 1021 5 4

E FH I N2z V C

This instruction is essentially a no-operation; that is, the CREriwanchesui merely
adwances the Program Counter to thgtnestruction in sequence. None of the Condition
Code fhags are décted.

The LBRN instruction prades a 4-byte no-op that consumesus lg/cles, whereas
NOP is a single-byte instruction that consumes either 1 os 3/bles. In addition, there
Is the BRN instruction which pvades a 2-byte no-op that consumeau8 tycles.

Since the branch is wer talen, the third and fourth bytes of the instruction do noteserv
ary purpose and may containyavalue.These bytes could contain program code or data
that is accessed by some other instruction(s).

SeeAlso: BRN, LBRA, NOP

- 86 -

LBSR

Long Branch to Subroutine
S «S-2
PC' « PC+ IMM

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LBSR address RELATIVE 17 9/7 3

E FHI N 2Z V C

This instruction pushes thealue of the PC ggster (after the LBSR instruction bytes
have been fetched) onto the haalw stack and then performs an unconditional velati
branch. None of the Condition Codadt are dé&cted.

By pushing the PCalue onto the stack, the called subroutine can "return” to this address
after it has completed.

The LBSR instruction is similar in function to the JSR instructibhe primary
difference is that LBSR uses the RelafAddressing mode which alls the code to be
position-independent.

The branch address is calculated by adding the curatund wf the PC gaster (after the
LBSR instruction bytes lva been fetched) with the 16-bit dg-complement alue
contained in the second and third bytes of the instruction. Long branch instructions
permit a relatre jump to ag location within the 64K address spatée smallerfaster

BSR instruction can be used instead when the destination address is within -126 to +12
bytes of the address of the branch instruction.

SeeAlso: BSR, JSR, PULS, RTS

- 87 -

LBVC

Long Branch If Overflow Clear

IF CC.V = 0 then PC’ ~ PC + IMM

SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBVC address RELATIVE 1028 5 (6 if taken) 4

E FH I N 2z VvV C

This instruction tests the @xflow (V) flag in the CC rgister and, if it is clear (0), causes
a relatve branch. If th&/ flag is set, the CPU continueseeuting the net instruction in

sequence. None of the Condition Cocdgél are dé&cted by this instruction.

When used follwing an operation on signed @&complement) binaryaes, the
LBVC instruction will branch if there as no werflow.

The branch address is calculated by adding the curaéue of the PC gaster (after the
LBVC instruction bytes hae been fetched) with the 16-bit dg-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadhe smallerfaster BVC
instruction can be used instead when the destination address is within -126 to +129 byt

of the address of the branch instruction.

SeeAlso: BVC, LBVS

- 88 -

LBVS

Long Branch If Overflow Set

IF CC.V #0then PC’ ~ PC + IMM
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LBVS address RELATIVE 1029 5 (6 if taken) 4

E FH I N Z

This instruction tests the @xflow (V) flag in the CC rgister and, if it is set (1), causes a
relatve branch. If th&/ flag is clearthe CPU continueskecuting the ne instruction in

sequence. None of the Condition Codgél are dé&cted by this instruction.

When used follwing an operation on signed @&complement) binaryaes, the
LBVS instruction will branch if an\erflow occurred.

The branch address is calculated by adding the curaéue wf the PC gaster (after the
LBVS instruction bytes ha been fetched) with the 16-bit dga-complement alue
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relatve jump to ag location within the 64K address spadie smallerfaster BVS
instruction can be used instead when the destination address is within -126 to +129 byt

of the address of the branch instruction.

SeeAlso: BVS, LBVC

-89 -

| D (8Bit)
Load Data into 8-Bit Accumulator
I« IMMS8|(M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS op | ~ |#|lop| ~ |#]|orP| ~ |#|oOP| ~ |#
LDA 86 2 21 96 | 4/3| 2| A6 4+ | 2+| B6 | 5/4| 3
LDB C6 2 2| D6 | 4/3| 2 | E6 4+ | 2+| F6 | 5/4| 3
LDE 1186 3 3 |1196| 5/4 | 3 |11A6| 5+ | 3+]|11B6| 6/5| 4
LDF 11C6| 3 3 |11D6| 5/4 | 3 |11E6| 5+ | 3+|11F6| 6/5| 4

LDE and LDF areailable on 6309 only

E FHI N 2Z V C
t]1t]0

These instructions load either an 8-bit immediaiee or the contents of a memory byte

into one of the 8-bit accumulators (A,B,E,H)he Condition Codes arefatted as
follows.

The Naative flag is set equal to thewevalue of bit 7 of the accumulator
The Zero fag is set if the rive accumulator alue is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry fhg is not dected by these instructions.

O< NZ

SeeAlso: LD (16-bit), LDQ

-90 -

| D (16 Bit)
Load Data into 16-Bit Register
r « IMM16|(M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED

FORMS oP ~ # | OP ~ # | op ~ # | OP ~ #
LDD cC 3 3| DC|5/4| 2| EC| 5+ |2+]| FC | 6/5| 3
LDS 10CE| 4 4 |10DE 6/5| 3 |10EE| 6+ | 3+|10FE| 7/6| 4
LDU CE 3 3| DE| 5/4| 2 | EE 54+ | 2+| FE | 6/5]| 3
LDW 1086 4 4 11096 6/5| 3 |10A6| 6+ | 3+|10B6| 7/6| 4
LDX 8E 3 3| 9E| 5/4| 2| AE 5+ [2+| BE | 6/5] 3
LDY 108E|, 4 4 |109E| 6/5| 3 |10AE| 6+ | 3+|10BE| 7/6| 4

LDW: s available on 6309 only

E FH I N 2Z V C
t]t|0

These instructions load either a 16-bit immediakie or the contents from a pair of
memory bytes (in big-endian order) into one of the 16-bit accumulators (D,W) or one of
the 16-bit Ind& registers (X,YU,S).The Condition Codes arefated as follws.

The Naative flag is set equal to thewevalue of bit 15 of the gster
The Zero fag is set if the e register \alue is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry f&g is not dected by these instructions.

O<NZ

SeeAlso: LD (8-bit), LDQ, LEA

-91 -

LDBT

Load Memory Bit into Register Bit

6309 ONLY

r.dstBit’ ~ (DPM).srcBit
SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
LDBT r,sBitdBit,addr DIRECT 1136 716 4

The LDBT instruction loads thealue of a specid bit in memory into a spe@fl bit of
either theA, B or CC rgisters. None of the Condition Codads are dkcted by the
operation unless CC is speedias the igaster in which case only the destination bit will
be afected.The usefulness of the LDBT instruction is limited by taet that only Direct

Addressing is permitted.

Accumulator A

Memory Location $0040

7 6 5 4 3 2 1 O 7 6 5 4 3 2 1 0

ololololzl2[1[1] $0F 1[1lolofol1]2[0] sCcé
|

| ;

oloJofo[1]2[o[1] $0D LDBT A 5,1, $40

The fgure abwe shaevs an @ample of the LDBT instruction where bit 1 A¢cumulator

A is Loaded with bit 5 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the

operandsdestination egister, souice bit destination bitsouice addess

The object code format for the LDBT instruction is:

$11

$36 POSTBYTE

ADDRESS LSB

POSTBYTE FORMAT

— Destination (rgister) Bit Number (0 - 7)

Register Code

Source (memory) Bit Number (0 - 7)

Code

Register

00

CcC

01

A

10

B

11

Invalid

SeeAlso: BAND, BEOR, BIAND, BIEOR, BIOR, BOR, STBT

-92 -

LDMD

Load an Immediate Value into the MD Register

MD.NM’ « IMM.O
MD.FM’ « IMM.1

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LDMD #i8 IMMEDIATE 113D 5 3

E FHI N 2Z V C

This instruction loads the east-signiftant bits of the MD mgister (theNative Mode
and FIRQ Mode control bits) with the tw least-signittant bits of the immediate
operand. None of the Condition Codagi are décted.

The LDMD instruction preides the method by which the 6308eution mode can be
changed. Upon RESE®both the NM and FM mode bits are clearBae execution mode
may then be changed atyatime by e&ecuting an LDMD instruction. Sgeagel44 for
more information about the 630%exution modes.

Care should be tak when changing thealwe of the NM bit inside of an interrupt
service routine because doing so cdedciftthe behaor of an Rl instruction.

Bits 2 through 7 of the MD ggster are not &tcted by this instruction, so it cannot be
used to alter the /0 and IL status bits.

The figure belav shavs the layout of the MD ggster:

7 6 5 4 3 2 1 0
/0 | IL FM |NM

SeeAlso: BITMD , RTI

-903 -

LDQ

Load 32-bit Data into Accumulator Q
Q « IMM32|(M:M+3)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | oP ~ # | oP ~ #
LDQ CD 5 5 |10DC 8/7 | 3 |10EC| 8+ | 3+|10FC| 9/8| 4
E FHI NZVC

1] t1]0

This instruction loads either a 32-bit immediatdue or the contents of a quad-byte
value from memory (in big-endian order) into the Q accumuldtee Condition Codes
are afected as follws.

The Naative flag is set equal to thewevalue of bit 31 oAccumulator Q.

The Zero f&g is set if the e value ofAccumulator Q is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry fhg is not dected by this instruction.

O<NZ

SeeAlso: LD (8-bit), LD (16-bit)

-94 -

LEA
Load Effective Address

I’ «~ EA
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
LEAS INDEXED 32 4+ 2+
LEAU INDEXED 33 4+ 2+
LEAX INDEXED 30 4+ 2+
LEAY INDEXED 31 4+ 2+
E FH I N Z V C

* The Z flg is updated by LEAX and LEAonly.

These instructions compute thdeetive address from an Inged Addressing Mode
operand and place that address into one of the Stack Pointers (S or U) or one okthe Ind
Registers (X orY).

The LEAS and LEA instructions do not &fct ary of the Condition Code dfys.The
LEAX and LEAY instructions set the Zdh when the é&tctive address is 0 and clear it
otherwise.This permits X ant to be used as 16-bit loop counters as well asigiray
compatibility with the INX and DEX instructions of the 6800 microprocessor

LEA instructions difer from LD instructions in that thealue loaded into the gester is

the address speafl by the operand rather than the data pointed to by the address. LEA
instructions might be used when you need to pass a parameter by-reference as opposet
by-value.

The LEA instructions can be quiteengatile. Br example, adding the contents of
Accumulator B to Inde RajisterY and depositing the result in the User Stack pointer
(U) can be accomplished with the single instruction:

LEAU B,Y

NOTE: The efective address of an auto-increment operand is tideevprior to
incrementingTherefore, an instruction such EBAX X+ will leave X unmodifed.To
achieve the @pected results, you can useAX 1,X instead.

SeeAlso: ADDR, LD (16-bit), SUBR

-95 -

| SL ®BiY)
Logical Shift Left of 8-Bit Accumulator or Memory Byte

<+ P 0
C b7 = bO

SOURCE INHERENT DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | OP ~ # | oOP ~ #
LSLA 48 | 2/1| 1

LSLB 58 | 2/1| 1

LSL 08 | 6/5| 2| 68 6+ | 2+| 78 | 7/6| 3
E FHI1 NZVC

~ O I IO

These instructions shift the contents of &her B accumulator or a spe@t byte in
memory to the left by one bit, clearing bit 0. Bit 7 is shifted into the Caagydf the
Condition Codes gaster

The afect on the Half-Carry #lg is undefied for these instructions.

The Najative flag is set equal to thewevalue of bit 7; preiously bit 6.

The Zero fag is set if the e 8-bit value is zero; cleared otherwise.

The Owerflow flag is set to the Exclug-OR of the original @ues of bits 6 and 7.
The Carry f&g receres the alue shifted out of bit 7.

O<NZTIT

The LSL instruction can be used for simple multiplication (a single left-shift multiplies
the \alue by 2). Other uses include gersion of data from serial to parallel and vise-
versa.

The 6309 does not prle \ariants of LSL to operate on the E and F accumulators.
can hovever achige the same functionality using th&DDR instruction. The
instructionsADDR E,E andADDR FF will perform the same left-shift operation on the E
and F accumulators respeetly.

TheASL and LSL mnemonics are duplicates. Both produce the same object code.

SeeAlso: LSLD

- 06 -

LSLD

Logical Shift Left of Accumulator D

- <« 0
C bl5 <= b0

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
LSLD INHERENT 1048 3/2 2

E FH I N Z V C

N I O

This instruction shifts the contentsAdécumulator D to the left by one bit, clearing bit O.
Bit 15 is shifted into the Carrydt of the Condition Codesgister

N The Neative flag is set equal to thewevalue of bit 15; preiously bit 14.

Z The Zero fag is set if the e 16-bit \alue is zero; cleared otherwise.

V The Oerflow flag is set to the Exclu®-OR of the original alues of bits 14 and 15.
C The Carry fag receres the alue shifted out of bit 15.

The LSL instruction can be used for simple multiplication (a single left-shift multiplies
the \alue by 2). Other uses include gersion of data from serial to parallel and vise-
versa.

The D accumulator is the only 16-bitgrster for which an LSL instruction has been
provided.You can hwever achi@e the same functionality for other 16-bigjigters using
the ADDR instruction. Br example, ADDR W,W will perform the same left-shift
operation on th&/ accumulatar

A left-shift of the 32-bit Q accumulator can be aghitas follavs:

ADDR W\W ; Shift Low-word, Hi-bit into Carry
ROLD ; Shift Hi-word, Carry into Low-bit

TheASLD and LSLD mnemonics are duplicates. Both produce the same object code.

SeeAlso: LSL (8-bit), ROL (16-bit)

-97 -

| SR @Bi)
Logical Shift Right of 8-Bit Accumulator or Memory Byte

0 — —>

b7 » b0 C
SOURCE INHERENT DIRECT INDEXED EXTENDED
FORMS oP | ~ # | OP | ~ # | OP | ~ # | oP | ~ #
LSRA 44 | 2/1| 1
LSRB 54 | 2/1| 1
LSR 04 | 6/5| 2| 64 6+ | 2+| 74 | 7/6| 3
EFHI NZVC

0]t !

These instructions logically shift the contents of sher B accumulator or a spe@t
byte in memory to the right by one bit, clearing bit 7. Bit O is shifted into the Cagy fl
of the Condition Codes gester

The Naative flag is cleared by these instructions.

The Zero fag is set if the e 8-bit value is zero; cleared otherwise.
The Overflow flag is not d@kcted by these instructions.

The Carry fag receies the alue shifted out of bit 0.

O< NZ

The LSR instruction can be used in simphgion routines on unsigneabhies (a single
right-shift dvides the alue by 2).

The 6309 does not primle variants of LSR to operate on the E and F accumulators.

SeeAlso: LSR (16-bit)

- 908 -

LSR (6B 6309 ONLY
Logical Shift Right of 16-Bit Accumulator
0 — —»
b15 > b0 C
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
LSRD INHERENT 1044 3/2 2
LSRW INHERENT 1054 3/2 2
E FH I N 2z VvV C

!

This instruction shifts the contents AEcumulator D to the right by one bit. Bit O is

shifted into the Carry dig of the Condition Codesgister The \alue of bit 15 is not

changed.

O< NZ

The Naative flag is cleared by these instructions.
The Zero fag is set if the ive 16-bit \alue is zero; cleared otherwise.
The Owerflow flag is not dected by this instruction.
The Carry fag receres the alue shifted out of bit 0.

These instructions can be used in simplasthn routines on unsignedbes (a single
right-shift dvides the alue by 2).

A logical right-shift of the 32-bit Q accumulator can be aaddeas follovs:

LSRD
RORW

; Shift Hi-word, Low-bit into Carry
; Shift Low-word, Carry into Hi-bit

SeeAlso: LSR (8-bit), ROR (16-bit)

-99 -

MUL

Unsigned Multiply of Accumulator A and Accumulator B
ACCD’ ~ ACCA *ACCB

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
MUL INHERENT 3D 11/10 1
E FH I N Z V C

!

This instruction multiplies the unsigned 8-batlwe inAccumulatorA by the unsigned 8-
bit value inAccumulator B.The 16-bit unsigned product is placed iAlmcumulator D.

Only two Condition Code #igs are décted:

Z The Zero fag is set if the 16-bit result is zero; cleared otherwise.
C The Carry fag is set equal to thewevalue of bit 7 irAccumulator B.

The Carry fag is set equal to bit 7 of the least-sigmifit byte so that rounding of the
most-signifcant byte can be accomplished kgeuting:

ADCA #0

SeeAlso: ADCA, MULD

- 100 -

MULD

Signed Multiply of Accumulator D and Memory Word
ACCQ’' ~ ACCD x IMM16|(M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED

FORMS OoP ~ # | OP ~ # | oP ~ # | oP ~ #
MULD 118F| 28 4 | 119F30/29 3 |11AF| 30+ | 3+|11BF|31/3Q 4
E FHI NZVC

O

This instruction multiplies the signed 16-balwe inAccumulator D by either a 16-bit
immediate @alue or the contents of a double-bysdue from memoryThe signed 32-bit
product is placed intAccumulator Q. Only tw Condition Code #igs are décted:

N The Najative flag is set if the tas complement result is gegtive; cleared otherwise.
Z The Zero fag is set if the 32-bit result is zero; cleared otherwise.

SeeAlso: MUL

- 101 -

N EG (accumulator)

Negation (Twos-Complement) of Accumulator

rr «O0-r
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
NEGA INHERENT 40 2/1 1
NEGB INHERENT 50 2/1 1
NEGD INHERENT 1040 3/2 2

NEGD is aailable on 6309 only

E FH I N 2Z V C

O O O

Each of these instructions change tladug of the specHid accumulator to that of st’
twos-complement; that is thale which when added to the originalwe produces a
sum of zero.The Condition Codedlgs are also modéd as follevs:

The Naative flag is set equal to thewevalue of the accumulators high-order bit.

The Zero fag is set if the v value of the accumulator is zero; cleared otherwise.

The Owerflow flag is set if the originalalue was 8Q; (8-bit) or 800Q, (16-bit); cleared otherwise.
The Carry fag is cleared if the originablue was 0; set otherwise.

O<NZ

The operation performed by the NEG instruction canxipeessed as:

result = 0 - value
The Carry fag represents a Bowofor this operation and is thereforevalys set unless
the accumulatos’ original \alue was zero.

If the original \alue of the accumulator is g0 (800Q¢ for NEGD) then the Garflow
flag (V) is set and the accumulatovalue is not modiéd.

This instruction performs a tg-complement operatiod ones-complement can be
achieved with the COM instruction.

The 6309 does not primle instructions for rgating the E, FW and Q accumulatoré
32-bit ngation of Q can be achied with the folleving instructions:

COMD
COMW

ADCR oW
ADCR 0,D

SeeAlso: COM, NEG (memory)

- 102 -

N EG (memory)

Negate (Twos Complement) a Byte in Memory
(M) <0 -(M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
NEG 00 | 6/5]| 2] 60 6+ |2+| 70 | 7/6| 3
EFHI NZVC

This instruction changes thalue of a byte in memory to that ofsitwos-complement;
that is the alue which when added to the originalwe produces a sum of zefthe
Condition Code #gs are also modé as follavs:

N The Neative flag is set equal to thewevalue of bit 7.

Z The Zero fag is set if the e value is zero; cleared otherwise.

V The Owerflow flag is set if the originalalue was 8Qg, cleared otherwise.
C The Carry fag is cleared if the originablue was 0; set otherwise.

The operation performed by the NEG instruction canxpeessed as:
result = 0 - value

The Carry fag represents a Bowofor this operation and is thereforevalys set unless
the memory byte' original \alue was zero.

If the original \alue of the memory byte is §&hen the Ogrflow flag (V) is set and the
byte’s value is not modi&d.

This instruction performs a tg-complement operatiod ones-complement can be
achiezed with the COM instruction.

SeeAlso: COM, NEG (accumulator)

- 1083 -

NOP

No Operation

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
NOP INHERENT 12 2/1 1
E FH I N Z V C

The NOP instruction adwnces the Program Counter by one byte withdecahg ary
other r@isters or condition codes.

The NOP instruction prades a single-byte no-op that consumes tws g/cles (one
cycle on a 6309 when NM=1). Somedar, more time-consuming instructions that can

also be used asfettive no-ops include:

BRN LBRN
ANDCC #$FF ORCC #0
PSHS #0 PULS #0
PSHU #0 PULU #0
EXG rr TFR rr
LEAS ,S LEAS ,S+
LEAU ,U LEAU ,U+

SeeAlso: BRN, EXG, LBRN, LEA, PSH, PUL, TFR

LEAS ,S++

LEAU ,U++

- 104 -

OIM

Logical OR of Immediate Value with Memory Byte
(M) « (M)OR IMM

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
OIM #8;EA 01 6 3| 61 7+ | 3+]| 71 7 4
EFHI NZVC

The OIM instruction logically ORs the contents of a byte in memory with an 8-bit
immediate alue. The resulting @lue is placed back into the designated memory
location.

N The Neative flag is set equal to thewevalue of bit 7 of the memory byte.

Z The Zero fhg is set if the e value of the memory byte is zero; cleared otherwise.
V The Overflow flag is cleared by this instruction.

C The Carry fag is not dected by this instruction.

OIM is one of the instructions added to the 6309 whichnaltogical operations to be
performed directly in memory instead ofvivey to use an accumulatdt takes three
separate instructions to perform the same operation on a 6809:

6809 (6 instruction bytes; 12ycles)

LDA #$CO
ORA 4,U
STA 4,U

6309 (3 instruction bytes; 8ycles)
OIM #$C0;4,U

Note that the assembler syntax used for the OIM operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immedia
operand and the address operand.

The object code format for the EIM instruction is:
OPCODE |IMMED VALUE| ADDRESS/INDEX BYTE(S)

SeeAlso: AIM |, EIM, TIM

- 105 -

OR (@ Bit)

Logically OR Accumulator with a Byte from Memory
' < r OR IMM8|(M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
ORA 8A 2 2 | 9A | 4/3 | 2 | AA 4+ | 2+| BA | 5/4| 3
ORB CA 2 2 | DA| 4/3| 2 | EA 4+ | 2+| FA | 5/4| 3
E FH I NZVC
t11]0

These instructions logically OR the content®\o€umulatorA or B with either an 8-bit
immediate alue or the contents of a memory byitke 8-bit result is then placed back in
the specifed accumulator

The Najative flag is set equal to thewevalue of bit 7 of the accumulator

The Zero fag is set if the e value of the accumulator is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

The OR instructions are commonly used for setting spduifs in an accumulator to '1'
while leaving other bits unchanged. Consider the fwllny examples:

ORA #%00010000 ;Setshit4in A
ORB #BTF ;Sets all bits in B except bit 7

SeeAlso: BIOR, BOR, OIM, ORCC, ORD, ORR

- 106 -

ORCC
Logically OR the CC Register with an Immediate Value

CC’ « CCORIMMS8

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ORCC #i8 IMMEDIATE 1A 3 2

This instruction logically ORs the contents of the Condition Codgstez with the 8-bit
immediate alue speci®d in the operandihe result is placed back into the Condition
Codes rgistet

The ORCC instruction pvides a method to set specifiags in the Condition Codes
register All fl ags that correspond to '1' bits in the immediate operand are set, while thos:
corresponding with 'O's are left unchanged.

The bit numbers for eachafi are shan belaw:

One of the more common uses for the ORCC instruction is to set the IRQ and FIRC
Interrupt Masks (I and F) at the dening of a routine that must run with interrupts
disabledThis is accomplished byecuting:

ORCC #$50 : Set bits 4 and 6 in CC

Some assemblers will accept a comma-delimited list of the bit names as an adt¢onati
the immediate alue. for instance, thexample abwe might also be written as:

ORCC I,F - Set bits 4 and 6 in CC

More examples:

ORCC #1 ; Set the Carry flag
ORCC #$80 ; Set the Entire flag

SeeAlso: ANDCC, OR (8-bit), ORD, ORR

- 107 -

ORD

Logically OR Accumulator D with Word from Memory
ACCD’ ~ ACCD OR (M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM oP | ~ # | OP | ~ # | oP | ~ # | oP | ~ #
ORD 108A| 5/4 | 4 |109A| 7/5 | 3 |10AA|7+/6+ 3+|10BA| 8/6| 4
EFH I NZVC

The ORD instruction logically ORs the contentsAatumulator D with a double-byte
value from memoryThe 16-bit result is placed back ifkacumulator D.

The Najative flag is set equal to thewevalue of bit 15 oAccumulator D.

The Zero fag is set if the e value of theAccumulator D is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry fag is not dected by this instruction.

O< NZ

The ORD instruction is commonly used for setting spedifis in the accumulator to '1'
while leaving other bits unchanged.

When using an immediate operand, it is possible to optimize code by determining if the
value will only afect half of the accumulatofFor example:

ORD #$1E00
could be replaced with:
ORA #S1E

To ensure that the Native (N) condition code is set correctiliis optimization must not
be made if it wuld result in an ORB instruction that sets bit 7.

SeeAlso: BIOR, BOR, OIM, OR (8-bit) ORCC, ORR

- 108 -

ORR

Logically OR Source Register with Destination Register
rl’ < rl1ORT0

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ORR 10,r1 IMMEDIATE 1035 4 3

E FH I N 2Z V C
t]1t|0

The ORR instruction logically ORs the contents of a soumgistex with the contents of
a destination mgster The result is placed into the destinatiogiseer

The Najative flag is set equal to thele of the resuls’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Ovwerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

All of the 6309 rgisters &cept Q and MD can be speeiii as either the source or
destination; haever specifying the PC gister as either the source or destination
produces undefed results.

Although the ORR instruction is capable of altering tloes fbf program gecution by
specifying the PC gaster as the destination, you showaid doing so because the pre-
fetch capability of the 6309 can produce un-predictable results.

See“6309 InterRgister Operatiorison pagel43 for details on ha this instruction
operates when gisters of diferent sizes are sped@t.

The Immediate operand for this instruction is a postbyte which uses the same format &
that used by th&FR and EXG instructions.df details, see the description of fiER
instruction.

SeeAlso: OR (8-bit), ORD

- 109 -

PSH

Push Registers onto a Stack

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
PSHS rO,r1,...rN

PSHS I8 IMMEDIATE 34 5+/4+ 2
PSHU rO,r1,...rN

PSHU 18 IMMEDIATE 36 5+ / 4+ 2

One additional ycle is used for each BYTE pushed.

These instructions push the curreatues of none, one or multiplegisters onto either
the Hardvare (PSHS) or User (PSHU) stack. None of the Condition Cads fre
affected by these instructions.

Only the rgisters present in the 6809 architecture can be pushed by these instruction:
Additionally, the stack pointer used by the instruction (S or U) cannot be pushed. Eact
register specid in the operanddid is pushed onto the stack one at a time in the order
shawvn in the fgure belav (the order you list them in the operareldiis irreleant).
Lower Memory Addresses
CcC
A A
B
DP
X
Y
Uor S
PC

Higher Memory Addresses

Push Order

For each 8-bit rgister specikd, the stack pointer is decremented by one and the
registers value is stored in the memory location pointed to by the stack pdtotezach
16-bit register specikd, the stack pointer is decremented by one, thistegs low-order

byte is stored, the stack pointer imagdecremented by one and thgiseers high-order
byte is then stored.

The PSH instructions use a postbyte wherein each bit position corresponds to one of tf
registers which may be pushed. Bits that are set (1) specifyglstens to be pushed.

POSTBYTE: |pclu/s| Y | X |DP| B | A |CC
7 0

SeeAlso: PSHSW PSHUW, PUL

- 110 -

PSHSW

Push Accumulator W onto the Hardware Stack

6309 ONLY

S «S5-2
(S:S+1) « ACCW
SOURCE FORM | ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
PSHSW INHERENT 1038 6 2

This instruction pushes the contents of Wieccumulator (E and F) onto the Haate

Stack (S). None of the Condition Codagé are décted by this instruction.

The PSHSW instructionrt decrements hardne stack pointer (S) by one and stores the
low-order byte (Accumulator F) at the address pointed to Bn& stack pointer is then

decremented by one @g, and the high-order byte (Accumulator E) is stored.

This instruction vas included in the 6309 instruction set to supplement the PSHS
instruction which does not support theaccumulatar

To push either half of th&/ accumulator onto the hardwe stack, you could use the

instructionsSTE -S or STF ,-S , howvever these instructions will set the Condition

Code fags to refct the pushedalue.

SeeAlso: PSH, PSHUW, PULSW, PULUW

-111 -

PSHUW

Push Accumulator W onto the User Stack

6309 ONLY

U «U-2
(U:U+1) < ACCW
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
PSHUW INHERENT 103A 6 2

This instruction pushes the contents of\ti@ccumulator (E and F) onto the User Stack
(U). None of the Condition Codeafis are décted by this instruction.

The PSHUW instruction st decrements user stack pointer (U) by one and stores the
low-order byte (accumulator F) at the address pointed to @& stack pointer is then

decremented by one @g, and the high-order byte (accumulator E) is stored.

This instruction vas included in the 6309 instruction set to supplement the PSHU
instruction which does not support theaccumulatar

To push either half of th&/ accumulator onto the user stack, you could use the

instructionsSTE -U or STF ,-U , howvever these instructions will set the Condition

Code fags to reftct the pushedalue.

SeeAlso: PSH, PSHSW PULSW, PULUW

-112 -

PUL

Pull Registers from Stack

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
PULS rO,r1,...rN

PULS 48 IMMEDIATE 35 5+ /4+ 2
PULU rO,r1,...rN

PULU #8 IMMEDIATE 37 5+ / 4+ 2

One additional ycle is used for each BYTE pulled.

These instructions pullaues for none, one or multiple gisters from either the
Hardware (PULS) or User (PULU) stack. None of the Condition Calgsfare décted
by these instructions unless the C@Giseer is speciéid as one of the gesters to pull.

Only the rgisters present in the 6809 architecture can be pulled by these instructions
The stack pointer used by the instruction (S or U) cannot be pAlledlue is pulled

from the stack for eachgester specid in the operanddid one at a time in the order
shavn belav (the order you list them in the operargldiis irreleant).

Lower Memory Addresses

CcC

A

B

DP

X

Y
Uor S
Y rc

Higher Memory Addresses

Pull Order

For each 8-bit rgister specigd, a byte is read from the memory location pointed to by
the stack pointer and then the stack pointer is incremented by onea€h 16-bit
register speciéd, the rgisters high-order byte is read from the address pointed to by the
stack pointer and then the stack pointer is incremented by ore.thie rgisters low-
order byte is read and the stack pointer mrmgcremented by one.

The PUL instructions use a postbyte wherein each bit position corresponds to one of th
registers which may be pulled. Bits that are set (1) specify thstees to be pulled.

POSTBYTE: |[pc|u/s| Y| X |DP| B | A |CC
7 0

SeeAlso: PSH, PULSW, PULUW

- 113 -

PULSW

Pull Accumulator W from the Hardware Stack
ACCW' ~ (S:5+1)

6309 ONLY

S’ «S+2
SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
PULSW INHERENT 1039 6 2

This instruction pulls aalue for theW accumulator (E and F) from the Harahe Stack
(S). None of the Condition Codadls are dkcted by this instruction.

The PULSW instruction ifst loads the high-order byte (Accumulator E) with thkug
stored at the address pointed to by the hardvstack pointer (S) and increments the
stack pointer by one. X& the lav-order byte (Accumulator F) is loaded and the stack

pointer is agin incremented by one.

This instruction vas included in the 6309 instruction set to supplement the PULS
instruction which does not support Meaccumulatar

To pull either half of thaV accumulator from the hardwe stack, you could use the
instructionsLDE ,S+ or LDF ,S+, however these instructions will set the Condition

Code fags to refct the pulled &lue.

SeeAlso: PSHSW PSHUW, PUL, PULUW

- 114 -

PULUW

Pull Accumulator W from the User Stack
ACCW’' ~ (U:U+1)

6309 ONLY

U «U+2
SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
PULUW INHERENT 103B 6 2

This instruction pulls aalue for theAV accumulator (E and F) from the User Stack (U).
None of the Condition Codeafjs are décted by this instruction.

The PULUW instruction fst loads the high-order byte (Accumulator E) with thkug
stored at the address pointed to by the user stack pointer (U) and increments the sta
pointer by one. N, the lav-order byte (Accumulator F) is loaded and the stack pointer
IS acain incremented by one.

This instruction vas included in the 6309 instruction set to supplement the PULU

instruction which does not support Meaccumulatar

To pull either half of thew accumulator from the user stack, you could use the
instructionsLDE ,U+ or LDF ,U+, hovever these instructions will set the Condition
Code fags to refct the pulled &lue.

SeeAlso: PSHSW PSHUW, PUL, PULSW

-115-

ROL (8B

Rotate 8-Bit Accumulator or Memory Byte Left through Carry

M- <

C b7 b0
SOURCE INHERENT DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | OP ~ # | OP ~ #
ROLA 49 | 2/1| 1
ROLB 59 | 2/1| 1
ROL 09 | 6/5| 2] 69 6+ |2+ 79 | 7/6| 3
E FHI NZVC

These instructions rotate the contents ofAher B accumulator or a spe@atl byte in
memory to the left by one bit, through the Carry bit of the QCfSter (efectively a 9-bit
rotation). Bit O receies the original &lue of the Carry flg, while the Carry #ig receres
the original \alue of bit 7.

The Najative flag is set equal to thewevalue of bit 7.

The Zero fag is set if the e 8-bit value is zero; cleared otherwise.

The Owerflow flag is set equal to tha@usive-OR of the original alues of bits 6 and 7.
The Carry f&g receres the alue shifted out of bit 7.

O<NZ

The ROL instructions can be used for subsequent bytes of a multi-byte shift to bring in
the carry bit from pngous shift or rotate instructions. Other uses includevexmon of
data from serial to parallel and visersa.

The 6309 does not priale \ariants of L to operate on the E and F accumulators.
However, you can achie the same functionality using tWCR instruction.The
instructionsADCR E,E andADCR FF will perform a left-rotate operation on the E and F
accumulators respexcély.

SeeAlso: ADCR, ROL (16-bit)

- 116 -

ROL (16 Bit

Rotate 16-Bit Accumulator Left through Carry

pps

<

6309 ONLY

C b15 bo
SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
ROLD INHERENT 1049 3/2 2
ROLW INHERENT 1059 3/2 2
E FH I N2z V C

O

These instructions rotate the contents of the Waaccumulator to the left by one bit,
through the Carry bit of the CCgister (efectively a 17-bit rotation). Bit O recas the
original value of the Carry #lg, while the Carry &g receres the original alue of bit 15.

N The Naative flag is set equal to thewevalue of bit 15.
The Zero fag is set if the nve 16-bit value is zero; cleared otherwise.

z
V The Owerflow flag is set equal to tha@usive-OR of the original alues of bits 14 and 15.
C

The Carry f&g receres the wlue shifted out of bit 15.

The ROL instructions can be used for subsequentds of a multi-byte shift to bring in
the carry bit from a pxeous shift or rotate instruction. Other uses includevewsion of

data from serial to parallel and visersa.

A left rotate of the 32-bit Q accumulator can be addde by eecuting ROLW
immediately follaved byROLD

SeeAlso: ROL (8-bit)

-117 -

ROR (8 Bit

Rotate 8-Bit Accumulator or Memory Byte Right through Carry

L. Nl

b7 b0 C
SOURCE INHERENT DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | OP ~ # | OP ~ #
RORA 46 | 2/1| 1
RORB 56 | 2/1| 1
ROR 06 | 6/5| 2| 66 6+ | 2+| 76 | 7/6| 3
E FHI NZVC

N !

These instructions rotate the contents ofAher B accumulator or a spe@at byte in
memory to the right by one bit, through the Carry bit of the @i3ter (efectively a 9-
bit rotation). Bit 7 recees the original alue of the Carry #lg, while the Carry &g
receves the original &lue of bit 0.

The Najative flag is set equal to thewevalue of bit 7 (original &lue of Carry).
The Zero fag is set if the e 8-bit value is zero; cleared otherwise.

The Owerflow flag is not dected by these instructions.

The Carry fhg receres the alue shifted out of bit 0.

O< NZ

The ROR instructions can be used for subsequent bytes of a multi-byte shift to bring in
the carry bit from pnaous shift or rotate instructions. Other uses include/emmon of
data from serial to parallel and visersa.

The 6309 does not prie variants of R to operate on the E and F accumulators.

SeeAlso: ROR (16-bit)

- 118 -

ROR (08

Rotate 16-Bit Accumulator Right through Carry

L. N

b15 bo C

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT

RORD INHERENT 1046 3/2 2
RORW INHERENT 1056 3/2 2
E FH I N2z V C

T3 !

These instructions rotate the contents of the W/@accumulator to the right by one bit,
through the Carry bit of the CCgister (efectively a 17-bit rotation). Bit 15 receds the
original value of the Carry #lg, while the Carry &g receres the original alue of bit 0.

N The Naative flag is set equal to thewevalue of bit 15 (original alue of Carry).
Z The Zero fhg is set if the e 16-bit \alue is zero; cleared otherwise.

V The Owerflow flag is not dkected by these instructions.

C The Carry fhg receres the alue shifted out of bit O.

The FOR instructions can be used for subsequenrts/of a multi-byte shift to bring in
the carry bit from a preous shift or rotate instruction. Other uses includevesion of
data from serial to parallel and visersa.

A right rotate of the 32-bit Q accumulator can be addeby &ecuting RORD
immediately follaved byRORW

SeeAlso: ROR (8-bit)

- 119 -

RTI

Return from Interrupt

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT

CC.E=0: 6
RTI INHERENT 3B ceEe115 /17 1
The Rl instruction restores the
machine state which a% @
stacled upon the wocation of
an interrupt service routine. Y ‘
PULL CC POLL A B 6309 Only

The «act behaior of the R
instruction depends on the state T~ Yes
of the E fhg in thestaclked CC Bl > ? PULL E,F

register and the state of the NN "l |
bit in the MD reister - Y

y PULL DR X,Y,U
The E fag will hare been set or PULL PC T

cleared at the time of the

interrupt, based on the type of ——Fg ¢
interrupt that occurred and theg
state of the FM bit in the MD

register at that time.

s
z
o

RTI Instruction Flav

Interrupt service routines should g&ito use the R instruction for returning control to
the interrupted taslall the logic for proper restoration of the machine state, based on the
CPU'’s current gecution mode, isublt-in.

When an RI instruction is &ecuted, the state of the NM bit in the MOyister must
match the state it & in when the interrupt occurred, otherwise if thea§g Wlas set, the
wrong \alues will be restored to the PR, Y, U and PC rgisters. Br this reason,
interrupt service routines shouldcgéd changing the NM bit unless thare prepared to
deal with this situation.

Service routines which muskamine or modify the staekl machine state can require a
considerable amount of additional code to determine whicfistees hae been
presered. In particulgrthe 6309 praides no instruction for testing the state of the NM
bit in the MD raister (segagel44for the listing of a subroutine which can accomplish
this).

SeeAlso: CWAI, RTS, SWI, SWI2, SWI3

- 120 -

RTS

Return from Subroutine

PC' o (S:S+1)
S «S+2
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
RTS INHERENT 39 5/4 1
E FH I N zZ V C

This instruction pulls the double-bytalue pointed to by the hardwne stack pointer (S)
and places it into the PCgister No condition code #lgs are décted.The efective
result is the same asowld be achieed using aPULS PC instruction.

RTS is typically used tox from a subroutine that as called via a BSR or JSR
instruction. Note, hwever, that a subroutine which presesvrgisters on entry by
pushing them onto the stack, may opt to use a single PULS instruction to both restore tr
registers and return to the calles in:

ENTRY PSHS A,B, X ; Preserve registers

PULS A,B,X,PC ; Restore registers and return

SeeAlso: BSR, JSR, PULS, RTI

-121 -

SBC ®@Bit)
Subtract Memory Byte and Carry from Accumulator A or B
I <« r-IMM8|(M) -C

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS OP ~ # | OP ~ # | OP ~ # | OP ~ #
SBCA 82 2 21 92 | 4/3| 2| A2 4+ | 2+| B2 | 5/4| 3
SBCB C2 2 2 | D2 | 4/3| 2| E2 4+ | 2+| F2 | 5/4| 3
E FH 1 NZVC

These instructions subtract either an 8-bit immediateevor the contents of a memory
byte, plus the alue of the Carry #lg from theA or B accumulatorThe 8-bit result is
placed back into the speeifl accumulatoMNote that since subtraction is performed, the
purpose of the Carrydd is to represent a Bowo

The afect on the Half-Carry #lg is undefied for these instructions.

The Na@ative flag is set equal to thewevalue of bit 7 of the accumulator
The Zero fag is set if the e accumulator &lue is zero; cleared otherwise.
The Overflow flag is set if an\eerflow occurred; cleared otherwise.

The Carry fag is set if a borm into bit-7 was needed; cleared otherwise.

O<NZI

The SBC instruction is most often used to perform subtraction of the subsequent bytes ¢
a multi-byte subtractiorfhis allovs the borra from a preious SUB or SBC instruction
to be included when doing subtraction for thetriegherorder byte.

Since the 6809 and 6309 both yide 16-bit SUB instructions for the accumulators, it is
not necessary to use the 8-bit SUB and SBC instructions to perform 16-bit subtraction.

SeeAlso: SBCD, SBCR

-122 -

SBCD

Subtract Memory Word and Carry from Accumulator D
ACCD’ ~ ACCD - IMM16|(M:M+1) - C

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
SBCD 1082 5/4 | 4 |1092| 7/5| 3 |10A2|7+/6+ 3+|10B2| 8/6| 4
E FH 1 NZVC

The SBCD instruction subtracts either a 16-bit immediaieevor the contents of a
double-byte alue in memoryplus the alue of the Carry #ig from the D accumulator
The 16-bit result is placed back infccumulator D. Note that since subtraction is
performed, the purpose of the Cariggdflis to represent a Bowo

The Half-Carry fag is not dkected by the SBCD instruction.

The Ngative flag is set equal to thewevalue of bit 15 oAccumulator D.

The Zero fag is set if the v value ofAccumulator D is zero; cleared otherwise.
The Owerflow flag is set if anwerflow occurred; cleared otherwise.

The Carry fhg is set if a borre into bit 15 was needed; cleared otherwise.

O< NZI

The SBCD instruction is most often used to perform subtraction of subsequelstal
a multi-byte subtractiorlhis allovs the borra from a preious SUB or SBC instruction
to be included when doing subtraction for thetriegherorder word.

The follonving instruction sequence is axaenple shwing hav 32-bit subtraction can be
performed on a 6309 microprocessor:

LDQ VAL1ADR ; Q = 32-bit minuend

SUBW VAL2ADR+2 ; Subtract lower half of subtrahend
SBCD VAL2ADR ; Subtract upper half of subtrahend
STQ RESULT ; Store difference

SeeAlso: SBC (8-bit), SBCR

- 123 -

SBCR

Subtract Source Register and Carry from Destination Register
r’ <rl-r0-C

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
SBCR r0,r1 IMMEDIATE 1033 4 3

E FH I N 2Z V C

N I I

The SBCR instruction subtracts the contents of a sougsstee plus the alue of the
Carry flag from the contents of a destinatioryiséer The result is placed into the
destination rgister

The Half-Carry fhg is not dected by the SBCR instruction.

The Najative flag is set equal to the@le of the resuls’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Ovwerflow flag is set if aneerflow occurred; cleared otherwise.

The Carry f&g is set if a borm into the high-order bit as needed; cleared otherwise.

O<NZI

All of the 6309 rgisters &cept Q and MD can be speeiii as either the source or
destination; hevever specifying the PC gester as either the source or destination
produces undefed results.

The SBCR instruction will perform either 8-bit or 16-bit subtraction according to the size
of the destination ggster When r@jisters of diferent sizes are sped@l, the source will

be promoted, demoted or substituted depending on the size of the destination and ¢
which specift 8-bit reagister is iwvolved. See“6309 InterRegister Operatioris on
pagel43for further details.

Although the SBCR instruction is capable of altering the f program gecution by
specifying the PC ggster as the destination, you showaid doing so because the pre-
fetch capability of the 6309 can produce un-predictable results.

The Immediate operand for this instruction is a postbyte which uses the same format ¢
that used by th& FR and EXG instructions. See the description offtRR instruction
for further details.

SeeAlso: SBC (8-bity, SBCD

- 124 -

SEX
Sign Extend the 8-bit Value in B to a 16-bit VValue in D

Accumulator D
N Accumulator A Accumulator B

b7

bbb 4 har]

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
SEX INHERENT 1D 2/1 1

E FH I N2z V C

! !

This instruction getends the 8-bit tas complementalue inAccumulator B into a 16-bit
twos complementalue inAccumulator D.This is accomplished by cgimg the \alue of
bit 7 (the sign bit) fromccumulator B into all 8 bits okccumulatorA.

The Naative flag is also set equal thalue of bit 7 inAccumulator B

The Zero fag is set if the v value ofAccumulator D is zero (B &as zero); cleared otherwise.
The Oerflow flag is not dkcted by this instruction.

The Carry f&g is not dkcted by this instruction.

O< NZ

The SEX instruction is used when a signedo§womplement) 8-bitalue needs to be
promoted to a full 16-bitalue. For unsigned arithmetic, promoting an 8-bélwe in
AccumulatorA to a 16-bit alue inAccumulator D requires zerodending the alue by
executing a CLRA instruction instead.

On a 6309, you can sigrxtend an 8-bit &lue inAccumulatorA to a 32-bit alue in
Accumulator Q by wecuting the follaving sequence of instructions:

SEX ; Sign extend Ainto D

TFR D,W ; Move Dto W

SEXW ; Sign extend W into Q
SeeAlso: SEXW

- 125 -

SEXW
Sign Extend a 16-bit Value in W to a 32-bit Value in Q

Accumulator Q

N Accumulator D Accumulator W
] CLIITTTTITITTITITITITI I] e TTTTTTITTITTITITITITI
YT
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
SEXW INHERENT 14 4 1
E FH I N Z V C

N

This instruction gtends the 16-bit tas complementalue inAccumulatorW into a 32-
bit twos complementalue inAccumulator QThis is accomplished by cgimg the \alue
of bit 15 (the sign bit) fromccumulatoW into all 16 bits oAccumulator D.

The Naative flag is also set equal thalue of bit 15 irAccumulatow

The Zero fag is set if the e value ofAccumulator Q is zero (W &s zero); cleared otherwise.
The Oerflow flag is not dkcted by this instruction.

The Carry f&g is not dected by this instruction.

O< NZ

The SEXW instruction is used when a signeco@womplement) 16-bitalue needs to
be promoted to a full 32-bitalue. r unsigned arithmetic, promoting a 16-kéiwe in
AccumulatonW to a 32-bit alue inAccumulator Q requires zerodending the alue by
executing a CLRD instruction instead.

You can signxdend an 8-bit &lue inAccumulatorA to a 32-bit \alue inAccumulator Q
by executing the follaving sequence of instructions:

SEX ; Sign extend A into D

TFR D,.W ; Move D to W

SEXW ; Sign extend W into Q
SeeAlso: SEX

- 126 -

ST (8B

Store 8-Bit Accumulator to Memory

(M) 1
SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS op | ~ |#|lop| ~ |#]|orP| ~ |#|oOP| ~ |#
STA 97 | 413 | 2 | A7 4+ | 2+| B7 | 5/4| 3
STB D7 | 4/3 | 2 | E7 4+ | 2+| F7 | 5/4| 3
STE 1197 5/4 | 3 |11A7| 5+ | 3+|11B7| 6/5| 4
STF 11D7| 5/4 | 3 |11E7| 5+ | 3+|11F7| 6/5| 4

STE and STF are aailable on 6309 only

E FH I N2z V C
1] t]0

These instructions store the contents of one of the 8-bit accumulators (A,B,E,F) into ¢
byte in memoryThe Condition Codes arefatted as follas.

The Neative flag is set equal to thebhe of bit 7 of the accumulator
The Zero fag is set if the accumulatenalue is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry f&g is not dected by these instructions.

O<NZ

SeeAlso: ST (16-bit), STQ

-127 -

ST (16 BiY)
Store 16-Bit Register to Memory
(M:M+1) «r

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS op | ~ |#|orP| ~ |#]|orP| ~ | #|oOP| ~ |#
STD DD | 5/4| 2 | ED 5+ | 2+| FD | 6/5| 3
STS 10DF 6/5| 3 |10EF| 6+ | 3+|10FF| 7/6| 4
STU DF | 5/4| 2 | EF 5+ | 2+| FF | 6/5| 3
STW 1097 6/5| 3 |10A7| 6+ | 3+|10B7| 7/6| 4
STX OF | 5/4 | 2 | AF 5+ | 2+| BF | 6/5]| 3
STY 109F 6/5| 3 |10AF| 6+ | 3+|10BF| 7/6| 4

STWis available on 6309 only

E FH I N 2zZ V C
t]1t10

These instructions store the contents of one of the 16-bit accumulators (D,W) or one ¢
the 16-bit Ind&/Stack rgisters (X,YU,S) to a pair of memory bytes in big-endian order
The Condition Codes arefatted as follws:

The Naative flag is set equal to th@le in bit 15 of the gster
The Zero fag is set if the gster \alue is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry fhg is not dected by these instructions.

O<NZ

SeeAlso: ST (8-bit), STQ

- 128 -

STBT 6309 ONLY
Store value of a Register Bit into Memory
(DPM).dstBit’ « r.srcBit
SOURCE FORM ADDRESSING MODE | OPCODE | CYCLES | BYTE COUNT
STBT r,sBitdBit,addr DIRECT 1137 8/7 4

The STBT instruction stores thalue of a specifid bit in either thé, B or CC reisters
to a specikd bit in memory None of the Condition Codeafis are décted by the
operation.The usefulness of the STBT instruction is limited by #t that only Direct

Addressing is permitted.

Memory Location $0040

Accumulator A

7 6 5 4 3 2 1 O 7 6 5 4 3 2 1 0

ololololxlz[2[1] $0F 1[1]ofolol1]1]0] $cs
|

| ;

oloJofo[1]2[o[1] $0D STBT A 5,1, %40

The fgure abse shavs an @ample of the STBT instruction where bit 5 from

AccumulatorA is stored into bit 1 of memory location $0040 (DP = 0).

The object code format for the STBT instruction is:

$11

$37

POSTBYTE

ADDRESS LSB

POSTBYTE FORMAT

—— Destination (memory) Bit Number (0 - 7)

Register Code

Source (rgister) Bit Number (0 - 7)

Code

Register

00

CcC

01

A

10

B

11

Invalid

SeeAlso: BAND, BEOR, BIAND, BIEOR, BIOR, BOR, LDBT

- 129 -

STQ

Store Contents of Accumulator Q to Memory
(M:M+3) < Q

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS OoP ~ # | OP ~ # | oP ~ # | oP ~ #
STQ 100Dy 8/7 | 3 |10ED| 8+ | 3+|10FD| 9/8| 4
EFHI NZVC
! 110

This instruction stores the contents of the Q accumulator into 4 sequential bytes o
memory in big-endian ordeFhe Condition Codes arefafted as follas.

The Najative flag is set equal to thele of bit 31 oAccumulator Q.

The Zero fag is set if thealue ofAccumulator Q is zero; cleared otherwise.
The Owerflow flag is alvays cleared.

The Carry fhg is not dected by this instruction.

O<NZ

SeeAlso: ST (8-bit), ST (16-bit)

- 130 -

SUB ®@B8iY)
Subtract from value in 8-Bit Accumulator
I« r-IMMB8|(M)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | OP ~ # | op ~ # | OP ~ #
SUBA 80 2 2| 90 | 4/3| 2| AO 4+ | 2+| BO | 5/4| 3
SUBB Co 2 2 | DO | 4/3| 2| EO 4+ | 2+| FO | 5/4| 3
SUBE 1180 3 3 11190| 5/4 | 3 |11A0| 5+ |3+]|11BO| 6/5| 4
SUBF 11COo| 3 3 |11D0O| 5/4 | 3 |11EO0| 5+ | 3+]|11F0| 6/5| 4

SUBE and SUBFare aailable on 6309 only

E F H |

N Z V C

!

ORI

These instructions subtract either an 8-bit immediateevor the contents of a byte in
memory from one of the 8-bit accumulators (A,B,E;H)e 8-bit result is placed back
into the speciéd accumulatoNote that since subtraction is performed, the purpose of

the Carry fhg is to represent a Bowo

O<NZTI

The 8-bit SUB instructions are used for single-byte subtraction, and for subtraction of the
least-signiftant byte in multi-byte subtractions. Since the 6809 and 6309 botli@ro
16-bit SUB instructions for the accumulators, it is not necessary to use the 8-bit SUB an
SBC instructions to perform 16-bit subtraction.

SeeAlso: SUB (16-bity, SUBR

The walue of Half-Carry #g is undefied after recuting these instructions.
The Naative flag is set equal to thewevalue of bit 7 of the accumulator

The Zero fag is set if the v accumulator &lue is zero; cleared otherwise.
The Owerflow flag is set if anwerflow occurred; cleared otherwise.
The Carry fag is set if a borm into bit 7 was needed; cleared otherwise.

-131-

SUB (6B

Subtract from value in 16-Bit Accumulator
I« r-IMM16|(M:M+1)

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED

FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
SUBD 83 | 4/3| 3| 93| 6/4| 2| A3 |6+/542+| B3 | 7/5| 3
SUBW 1080| 5/4 | 4 |1090| 7/5| 3 |10AO0|7+/6+ 3+|10BO| 8/6| 4

SUBWis available on 6309 only

E FH I N 2zZ VvV C

R ORI

These instructions subtract either a 16-bit immediateevor the contents of a double-
byte \alue in memory from one of the 16-bit accumulators (D, 16-bit result is
placed back into the speeifl accumulatoNote that since subtraction is performed, the
purpose of the Carrydy is to represent a Bowo

The Half-Carry fag is not dected by these instructions.

The Naative flag is set equal to thewevalue of bit 15 of the accumulator
The Zero fag is set if the ive accumulator &lue is zero; cleared otherwise.
The Oerflow flag is set if anwerflow occurred; cleared otherwise.

The Carry fag is set if a borre out of bit 7 vas needed; cleared otherwise.

O<NZzI

The 16-bit SUB instructions are used for 16-bit subtraction, and for subtraction of the
least-signiftant word of multi-byte subtractions. See the description of $BCD
instruction for an xample of hav 32-bit subtraction can be performed on a 6309.

SeeAlso: SUB (8-bit), SUBR

-132 -

SUBR

Subtract Source Register from Destination Register
rl’ «rl-r0

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
SUBR 10,r1 IMMEDIATE 1032 4 3

E FH I N Z V C

O A O

The SUBR instruction subtracts thalwe contained in the sourcaigter from the alue
contained in the destinationgister The result is placed into the destinatiogiseer
Note that since subtraction is performed, the purpose of the Cagrisfto represent a
Borrow.

The Half-Carry fag is not d@kcted by the SUBR instruction.

The Naative flag is set equal to thele of the resul’ high-order bit.

The Zero fag is set if the e value of the destinationgester is zero; cleared otherwise.
The Owerflow flag is set if anwerflow occurred; cleared otherwise.

The Carry fag is set if a borme into the high-order bit s needed; cleared otherwise.

O<NZTI

All of the 6309 rgisters &cept Q and MD can be speetfi as either the source or
destination; haever specifying the PC gister as either the source or destination
produces undefed results.

The SUBR instruction will perform either 8-bit or 16-bit subtraction according to the size
of the destination gaster When reisters of diferent sizes are spe@d, the source will

be promoted, demoted or substituted depending on the size of the destination and ¢
which specift 8-bit ragister is iwvolved. See“6309 InterRegister Operatiorison
pageld3for further details.

Although the SUBR instruction is capable of altering tbe fbf program gecution by
specifying the PC gaster as the destination, you showoid doing so because the pre-
fetch capability of the 6309 can produce un-predictable results.

The Immediate operand for this instruction is a postbyte which uses the same format ¢
that used by th& FR and EXG instructions. See the description ofltRR instruction
for further details.

SeeAlso: SUB (8-bit), SUB (16-bit)

- 133 -

SWI

Software Interrupt

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SWiI INHERENT 3F 19/21 1
SWi2 INHERENT 103F 20/ 22 2
SWI3 INHERENT 113F 20/ 22 2

The SWI, SWI2 and SWI3
instructions each imke a | (SW.SWI2,SWI3

|

Software Interrupt. v
PUSH BA, CC
SETE=1
Each of these instructiongdt I v
Swi SWI2 swiz |

set the E fig in the CC mgister PUSH |
; PC, UY, X, DP
and then push the machine state |SET =1 F=]| PC — [FFF2:3]
A

onto the hardware stack (S).
S < e (reees]
A

After stacking the machine Yes
state, the SWI instruction sets| PusH FE |—
the | and F interrupt masks in 6309 only

the CC rgister SWI2 and (' DponE)

SWI3 do not modify the mask.)
ty SWI Instruction Flav

PC [FFFA:B]

Finally, control is transferred to
the interrupt service routine whose address is obtained from ebtorvwhich
corresponds to the particular instruction.

The state of the NM bit in the MD gester determines whether or not the E and F
accumulators are included in the stdkmachine state. Service routines should be
written to work properly rgardless of the current state of the NM [ihis is best
accomplished bywiding modifcation of the NM bit and using thelTRinstruction to
return control to the interrupted task. If an SWI service routine needsatoiree or
modify the stackd machine state, it maydi need to determine the current state of the
NM bit. Seepagel44for the listing of a subroutine that will accomplish this task.

NOTE: When Motorola introduced the 6809, yheesignated SWI2 as an instruction
resered for the end useand not to be used in packaged saftv Under the OS9
operating system, SWI2 is used twake Service Requests

SeeAlso: RTI

- 134 -

SYNC

Synchronize with Interrupt
Halt Execution and Wait for Interrupt

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
SYNC IMMEDIATE 13 24 /=23 1

The SYNC instruction alles software to synchronize itself with axternal hardware
event (interrupt)When eecuted, SYNC places the CRldata and addresadses into a
high-impedance state, stopseeuting instructions andaits for an interrupt. None of the
Condition Code #gs are directly &cted by this instruction.

When a signal is asserted oryame of the CP$ 3 interrupt lines (IRQ, FIRQ or NMI),

the CPU clears the synchronizing state and resumes processing. If the interrupt type
not maskd and the interrupt signal remains asserted for at leasi€scthen the CPU

will stack the machine state accordingly aedter to the interrupt service routine. If the
interrupt type is masgd, or the interrupt signalas asserted for less thanyles, then

the CPU will simply resumexecution at the follwing instruction without imoking the
interrupt service routine.

Typically, SYNC is ececuted with interrupts mas# so that the folling instruction will

be eecuted as quickly as possible after the synchronizimgteoccurs (no service
routine awerhead). Unlik CWAI, the SYNC instruction does not include the ability to set
or clear the interrupt masks as part of its operatforseparate ORCC oANDCC
instruction would be needed to accomplish this.

SYNC may be useful for synchronizing with a video display or for perfornasgdata
acquisition from an 1/0O dece.

SeeAlso: ANDCC, CWAI, RTI, SYNC

- 135 -

TFM

Transfer Memory

SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
TEM 1O+, r1+ IMMEDIATE 1138 6 + 3n 3
TFM rO-, r1- IMMEDIATE 1139 6 +3n 3
TEM rO+,rl IMMEDIATE 113A 6 + 3n 3
TFM 10, r1+ IMMEDIATE 113B 6 +3n 3

Three additionalyrles are used for each BYTE transferred.

The TFM instructions transfer the number of bytes spedifn theW accumulator from a
source address pointed to by theYX,U, S or D rgisters to a destination address also
pointed to by one of thosegisters After each byte is transferred the source and destination
registers may both be incremented by one, both decremented by one, only the sourc
incremented, or only the destination incrememnedumulatoV is aways decremented by

one after each byte is transferrétie instruction completes wh&v is decremented to 0.

The forms which increment or decrement both addresseglpra block-muae operation.
Typically, the decrementing form is needed when the source block residesvat adluress
than the destination blo&ND the two blocks may werlap each other

The forms which increment only one of the addresses are usefullifig & block of
memory with a particular bytealue (destination increments), and for reading or writing a
block of data from or to a memory-mapped |/Q@ide. For the reasons described beld/O
transfers should afays be performed with interrupts mask

The Immediate operand for this instruction is a postbyte which uses the same format as th
used by theTFR and EXG instructionsAn lllegal Instruction &ception will occur if the
postbyte contains encodings fogigers other than X, U, S or D.

IMPOR TANT:

The TFM instructions are unique in that thare the only instructions that may be
interrupted before tlyehare completed. If an unmasét interrupt occurs whilexecuting a

TFM instruction, the CPU will interrupt the operation at a point where it has read a byte
from the source addressutbbefore it has incremented or decrementeyl ragisters or
stored the byte at the destination addrébs.interrupt service routine will bevioked in the
normal mannenaept for the &ct that the PCalue pushed onto the stack will still point to
the TFM instruction.This causes th€FM instruction to beecuted agin when the service
routine returns. Since the addresgisters were not updated prior to thedoation of the
service routineTFM will start by reading a byte from the preus source address for a
second time.

It is also important to remember that in emulation mode (NM=0)\Wheegister is not
automatically preseed. If a service routine mod#W but does notelicitly presene its
original value, it could alter the actual number of bytes processed Banstruction.

- 136 -

TFR

Transfer Register to Register
0 -rl

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
TFR rO,r1 IMMEDIATE 1F 6/4 2

TFR copies the contents of a sourcgister into a destination gester None of the
Condition Code #gs are d&cted unless CC is speeifi as the destinationgister

Any of the 6309 rgisters &cept Q and MD may be speeifi as either the source,
destination or both. Specifying the samgister for both the source and destination
produces an instruction which, dKkNOR has no déct.

The TFR instruction can be used to alter thwvflof execution by specifying PC as the
destination rgister

When an 8-bit source gester is transferred to a 16-bit destinatiogister the contents
of the 8-bit rgister are placed into both haks of the 16-bit gster When a 16-bit
source rgister is transferred to an 8-bit destinatiogistetr only the uppepr the laver

half of the 16-bit rgister is transferred\s illustrated in the diagram b&pwhich half is
transferred depends on which 8-bijister is speciéd as the destination.

b15 b8 b7 b0
16-bit register (D, XY, U, S,PCW,V): [MSB | LSB |

8-bitregiste: | A | | B | | E | | F | | pbp | | cc |

TheTFR instruction requires a postbyte in which the source and destinagisters are
encoded into the upper andver nibbles respectely.

| | | | | | Code Register Code Register
POSTBYTE] b7 | | | b4| b3 | | | b0 0000 D 1000 A
| | | | 0001 X 1001 B
0010 Y 1010 CcC
0011 U 1011 DP
0100 S 1100 0
ro 0101 PC 1101 0
rl Shaded encodings arevatid 0110 W 1110 E
on 6809 microprocessors 0111 \% 1111 F

SeeAlso: EXG, TFR (6809 implementation

- 137 -

TFR

Transfer Register to Register
0 -rl

SOURCE FORM | ADDRESSING MODE | OPCODE CYCLES BYTE COUNT
TFR rO,r1 IMMEDIATE 1F 6 2

TFR copies the contents of a sourcgister into a destination gester None of the
Condition Code #gs are d&cted unless CC is speeifi as the destinationgister

The TFR instruction can be used to alter thmvflof execution by specifying PC as the
destination rgister

Any of the 6809 rgisters may be speafil as either the source, destination or both.
Specifying the same gester for both the source and destination produces an instruction
which, like NOR has no déct.

The table bely explains hav the destination gaster is afflected when the source and
destination sizes are thfent.This behaior differs from the 6309 implementation.

Operation 8-bit Register Used Results
16 - 8 Any Destination = LSB from Source
8- 16 AorB MSB of Destination = Ff; LSB = Source
8- 16 CC or DP Both MSB and LSB of Destination = Source

TheTFR instruction requires a postbyte in which the source and destinajisters are
encoded into the upper anavier nibbles respectely.

| | | | | | Code Register | Code Register
| | | | 0001 X 1001 B

0010 Y 1010 cC
0011 U 1011 DP
0100 S 1100 invalid

ro 0101 PC 1101 invalid

ri 0110 invalid 1110 invalid
0111 invalid 1111 invalid

If an invalid register encoding is used for the source, a constdae\of FE; or FFFF;is
transferred to the destination. If avaiid register encoding is used for the destination,
then the instruction will hee no efect. The invalid register encodings hee \alid
meanings when executed on 6309 @eessors, and should bevaided in code that
needs to vork the same way on both CPL&.

SeeAlso: EXG, TFR (6309 implementation

- 138 -

TIM

Bit Test Immediate Value with Memory Byte
TEMP ~ (M) AND IMMS8

SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORM OoP ~ # | OP ~ # | oP ~ # | oP ~ #
TIM #i8;EA 0B 6 3| 6B 7+ | 3+| 7B 7 4
E FH 1 NZVC

t]1t]0

The TIM instruction logicallyANDs the contents of a byte in memory with an 8-bit
immediate alue.The resulting &lue is tested and then discardéde Condition Codes
are updated to reftt the results of the test as folk

The Naative flag is set equal to bit 7 of the resultirgjue.

The Zero fag is set if the resultingalue was zero; cleared otherwise.
The Oerflow flag is cleared by this instruction.

The Carry f&g is not dected by this instruction.

O<NZ

TIM can be used as a spaceisg optimization for a pair of equalent 6809
instructions, and to perform a bit test withouving to utilize a rgister However, it is
slower than the 6809 equalent:

6809: (4 instruction bytes; 7ycles)

LDA #B3F
BITA 4,U

6309: (3 instruction bytes; 8ycles)
TIM #$3F;4,U

Note that the assembler syntax used for TW®l operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immedia
operand and the address operand.

The object code format for tHdM instruction is:
OPCODE | IMMED VALUE| ADDRESS /INDEX BYTE(S)

SeeAlso: AIM ,AND, EIM, OIM

- 139 -

TST (accumulator)

Test Value in Accumulator

TEMP < r
SOURCE FORM | ADDRESSING MODE OPCODE CYCLES BYTE COUNT
TSTA INHERENT 4D 211 1
TSTB INHERENT 5D 2/1 1
TSTD INHERENT 104D 3/2 2
TSTE INHERENT 114D 3/2 2
TSTF INHERENT 115D 3/2 2
TSTW INHERENT 105D 3/2 2

TSTD TSTE TSTF and TSTW are =ailable on 6309 only

E FH I N2z V C
1110

The TST instructions test thealue in an accumulator to setup the Condition Codes
register with minimal status for thatle. The accumulator itself is not modill by
these instructions.

N The Najative flag is set equal to the@le of the accumulatarhigh-order bit (sign bit).
Z The Zero fhg is set if the accumulatenalue is zero; cleared otherwise.

V The Owerflow flag is alvays cleared.

C The Carry fag is not dkcted by these instructions.

For unsigned alues, the only meaningful information prded is whether or not the
value is zero. In this case, BEQ or BNEBwd typically follov such a test.

For signed (tws complement)alues, the information pvaded is suficient to allav arny

of the signed conditional branches (BGE, BBLE, BLT) to be used as though the
accumulatos value had been compared with zérou can also use BMI and BPL to
branch according to the sign of thelwe.

To determine the sign of a 16-bit or 32-batlve, you only need to test the high order
byte. For example, TSTA is suficient for determining the sign of a 32-bit dsv
complement &lue in accumulator Q. A full test of accumulator Q could be
accomplished by storing it to a scratchpad RAM location (GMRaddress). In a
traditional stack enronment, the instructiorl5TQ -4,S may be acceptable.

SeeAlso: CMP, STQ, TST (memory)

- 140 -

TST (memory)

Test Value in Memory Byte

TEMP — (M)
SOURCE IMMEDIATE DIRECT INDEXED EXTENDED
FORMS oP ~ # | oP ~ # | op ~ # | OP ~ #
TST OD | 6/4| 2| 6D |6+/542+| 7D | 7/5| 3
E FH 1 NZVC

The TST instructions test thealue in a memory byte to setup the Condition Codes
register with minimal status for thaalue.The memory byte is not modsfil.

The Naative flag is set equal to bit 7 of the bygealue (sign bit).
The Zero fag is set if the byte'\alue is zero; cleared otherwise.
The Oerflow flag is alvays cleared.

The Carry f&g is not dected by this instruction.

O<NZ

For unsigned alues, the only meaningful information prded is whether or not the
value is zero. In this case, BEQ or BNBwd typically follov such a test.

For signed (tws complement)alues, the information pvaded is suficient to allev ary

of the signed conditional branches (BGE, BBLE, BLT) to be used as though the
byte’s value had been compared with zefou could also use BMI and BPL to branch
according to the sign of thalue.

You can obtain the same information imnvé g/cles by loading the byte into an 8-bit
accumulator (LA and LDB are &stest). br this reason it is usually preferable twial
usingTST on a memory byte if there is aradable accumulator

SeeAlso: CMP, LD (8-bit), TST (accumulator)

- 141 -

Part [l
6309 Specifics

6309 Inter-Register Operations

The 6309 microprocessor adds/eml nev instructions which operate directly on a pair of
register operandd.he operations praded are addition, subtraction, bitwiaaID, bitwise OR,
bitwise Exclusie-OR, and comparisornfhere are tw forms of addition and subtraction
operations to all for inclusion or gclusion of the Carry bit.

ADCR ADDR ANDR CMPR
EORR ORR SBCR SUBR

Any of the 630% ragisters &cept Q and MD may be used in the iategister instructions as
either the source operand, destination operand or Altiough the PC mgister can be used in
these instructions, it is not advisethe pipelining performed by the 6309 is not properly
synchronized for these instructiof$is causes the actual P@lwe used in these operations to
be unpredictableThis flaw affects only the ne interregister instructions in the 6309
instruction set. Using PC inT&ER or EXG instruction functions correctlys on the 6809.

The interregister instructions will perform either an 8-bit or 16-bit operation according to the
size of thedestinatiorregister If the sizes of the source and destinatignsters difer then the
source operand will either be promoted or demoted agrshothe table belw.

Destination Siz e Sour ce Register Actual Sour ce Operand
8 bits Any 16-bit Rejister Lower 8 bits of 16-bit Source
16 bits A or B Accumulator D
16 bits E or F AccumulatorWv
16 bits CcC Zero in upper 8 bits; CC inwer 8 bits
16 bits DP DP in upper 8 bits; Zero inuger 8 bits

Using CC as the destination operand for instructions other than CMPR can be problénsatic.
is due to thedct that not only is the resultinglue of the operation stored in CQ@itlso too are
the status bits which reftt that result.The diagram belwo illustrates the order in which the
internal processing steps occur

[ANDR | [EORR| | ORR | [ADDR | | ADCR | [sSUBR| |[SBCR| [CMPR|

Calculate Result of the Operation and Storéémporary Reister

v vy vy v v !

CLEAR CC Flags: N, zVv CLEAR CC Flags: N, zy, C

vy ! vy

Move Result fromTemporary Rgister to the Destination Bister

!
v v !

ET N if Negative; Zif Zero SET. N if Negative; Z if Zero; V if Overflow; C if Carry / Borrav

- 143 -

Determining the 6309 Execution Mode

The BITMD instruction cannot be used to test the state of thestecution mode bits
(NM and FM).The state of NM can be determined programatically withiT®B8TNM
subroutine listed bela Upon return, accumulatér will contain the value of the NM
bit. All other registers are presezd.When run on a 6809 processor it wilvalys return
with A = 0.

TSTNM PSHS U,Y,X,DP,CC ; Preserve Registers
ORCC #3$D0 ; Mask interrupts and set E flag
TFR W)Y ; Y=W (6309), Y=$FFFF (6809)
LDA #1 ; Set result for NM=1
BSR L1 ; Set return point for RTI when NM=1
BEQ LO ; Skip next instruction if NM=0
TFR X,W ; Restore W
LO PULS CC,DP,X,Y,U ; Restore other registers
TSTA ; Setup CC.Z to reflect result
RTS
L1 BSR L2 ; Set return point for RTI when NM=0
CLRA ; Set result for NM=0
RTS
L2 PSHS U,Y,X,DP,D,CC ; Push emulation mode machine state
RTI ; Return to one of the two BSR calls

The state of the FM bit can only be determined when an actual FIRQ interrupt occurs
Upon FIRQ, the 6309 copies thalwe of the FM bit into the Entire (E) bit of the CC
register An FIRQ service routine can check the state of E upon entry:

F SRV PSHS A ; Save A on the stack
TFR CCA ; Copy CCinto A
ANDA #3$80 ; Clear all flags except E
STA FMSTATE ; Store for use by mainline code
; Clear interrupt source
PULS A ; Restore A
RTI ; Return

- 144 -

Part Il
Quick Reference

6809 /6309 Programming Aid

Addressing Modes
Immediate Direct Indexed?! Extended Inherent 53210
Instr. | Forms |Op| ~ | # |Op| ~ | # |Op| ~ | # |Op| ~ | # |Op| ~ | # Description HIN|Z|V|C
ABX ABX 3A| 3/1| 1 | X=X+ B (unsigned) - -] -]
ADC ADCA 89| 2 2 199| 43| 2 |A9| 4+ | 2+|B9| 54| 3 A=A+M8+C E3 B O A
ADCB Co| 2 2 |D9| 43| 2 |E9| 4+ |2+ | F9| 5/4]| 3 B=B+M8+C F R N A
ADCD 089| 5/4 | 4 |099| 7/5 | 3 |OA9| 7/6+| 3+ |0OB9| 8/6 | 4 D=D+M16+C S N I I
ADCR 031 3 rl=r1+r0+C See Note 2 N A
ADD ADDA 8B 2 |9B| 4/3| 2 |AB| 4+ | 2+ |BB| 5/4 | 3 A=A+ M8 o A A I
ADDB CB| 2 2 |DB| 4/3| 2 |EB| 4+ | 2+ |FB| 5/4 | 3 B=B+ M8 F I I A
ADDD C3| 43| 3 |D3| 6/4| 2 |E3|6/5|2+|F3| 75| 3 D =D + M16 HEARIERE:
ADDE 18B| 3 3 |19B| 5/4 | 3 |1AB| 5+ | 3+ |1BB| 6/5 | 4 E=E + M8 o A N A
ADDF 1CB| 3 3 |1DB| 5/4 | 3 |1EB| 5+ | 3+ |1FB| 6/5 | 4 F=F+ M8 gl e|ls]e
ADDR 030 4 3 rl1=r1+r0 See Note 2 EI A O I
ADDW 08B| 5/4 | 4 |09B| 7/5 | 3 |0AB| 7/6+| 3+ |0BB| 8/6 | 4 W =W + M16 -lrefee
AIM #18, EA 02| 6 3|62 7+ |3+ |72 7 4 M8 = M8 & 18 -lt]t]0]-
AND ANDA 84| 2 2 194|4/3|2 |A4| 4+ |2+ |B4| 54| 3 A=A&M8 -(t]t]|O]-
ANDB C4| 2 2 |D4| 4/3| 2 |E4| 4+ |2+ |F4 | 54| 3 B=B &M8 -[t]1]0]-
ANDCC |[1C| 3 | 2 CC=CC&l8 See Note 7
ANDD 084| 5/4 | 4 |094| 7/5 | 3 |0A4| 7/6+| 3+ |0B4| 8/6 | 4 D=D & M16 -|efs|O]-
ANDR 034| 4 3 r1=r1&r0 See Note 2 -1t t|O0f-
ASL ASLA 481 2/1 | 1 A 8|ttt |?
ASLB 581 21| 1 B 8lt|t|t]?
SAEAP N Yt anan = PR HHHH
ASL 08|6/5 |2 |68| 6+ |2« |78| 763 n 0 8lt|t]t]e
ASR ASRA 471 2/1 | 1 A 8ltft|-]¢
ASRB 571 21| 1 B ’ 8lt|t|-]¢
ASRD 047 312 | 2 ﬁa} %EE[%]:DE"Q SR ERE
ASR 07 |6/5|2 |67| 6 |2+ |77 | 7063 n 0 8lt|1]-]¢
BAND |BAND 130| 7/6 | 4 R.dstBit = M8.srcBit & R.dstBit See Note 3
BIAND 131| 7/6 | 4 R.dstBit =M8.srcBit & R.dstBit See Note 3
BEOR | BEOR 134| 7/6 | 4 R.dstBit = M8.srcBit XOR R.dstBit See Note 3
BIEOR 135| 7/6 | 4 R.dstBit =M8.srcBit XOR R.dstBit See Note 3
BIT BITA 85| 2 2 |195| 4/3| 2 |A5| 4+ | 2+ |B5| 54| 3 Bit TestA (A & M8) -1t t|Of -
BITB C5| 2 2 |D5| 4/3| 2 |E5| 4+ | 2+ |F5| 5/4| 3 Bit Test B (B & M8) -|t{t|O]-
BITD 085| 5/4 | 4 |095| 7/5 | 3 |OA5| 7/6+| 3+ |OB5| 8/6 | 4 Bit Test D (D & M16) -1t e|0]-
BITMD 13C 3 Bit Test MD (MD & I8) bits6and 7only| - | - | ¢ |- | -
BOR BOR 132| 7/6 | 4 R.dstBit = M8.srcBit | R.dstBit See Note 3
BIOR 133| 7/6 | 4 R.dstBit =M8.srcBit | R.dstBit See Note 3
CLR CLRA 4F| 2/1| 1 |A=0 -10|11(0|0
CLRB 5F| 2/1| 1 |B=0 -10|11(0|0
CLRD 04F| 3/2| 2 D=0 -|0|1|0|0
CLRE 14F| 3/2| 2 |E=0 -10|11(0|0
CLRF 15F| 3/2| 2 |F=0 -10|11(0|0
CLRW 05F| 3/2| 2 [W=0 o|1|{0|0
CLR OF | 6/5| 2 |6F| 6+ | 2+ | 7F| 7/6 | 3 M8 =0 -|{ofl1({0f0
CMP [CMPA 81| 2 2191 43| 2 |Al| 4+ | 2+|B1| 54| 3 Compare M8 fronA 8lt|t|t]t
CMPB Cl| 2 2 |D1|4/3| 2 |E1| 4+ |2+ |F1| 5/4 | 3 Compare M8 from B a3 A O B
CMPD 083| 5/4 | 4 |093| 7/5 | 3 |OA3| 7/6+| 3+ |0B3| 8/6 | 4 Compare M16 from D BRI RE:
CMPE 181| 3 3 |191| 5/4 | 3 |1A1| 5+ | 3+ |1B1| 6/5 | 4 Compare M8 from E 8lt|tft]s
CMPF 1C1| 3 3 |1D1| 5/4 | 3 |1E1| 5+ | 3+ |1F1| 6/5 | 4 Compare M8 from F 8lt|t|t|¢?
CMPR 037| 4 3 Compare rO fromrl See Note 2 S I B
CMPS 18C| 5/4 | 4 |19C| 7/5 | 3 |1AC| 7/6+| 3+ [1BC| 8/6 | 4 Compare M16 from S AR AR
CMPU 183| 5/4 | 4 |193| 7/5 | 3 |1A3| 7/6+| 3+ |1B3| 8/6 | 4 Compare M16 from U E I N
CMPW 081| 5/4 | 4 |091| 7/5 | 3 |OA1l| 7/6+| 3+ |0B1| 8/6 | 4 Compare M16 fronw SRR
CMPX 8C| 4/3| 3 |9C|6/4]| 2 |AC|6/5+|2+|BC| 7/5]| 3 Compare M16 from X A EREAERE
CMPY 08C| 5/4 | 4 |09C| 7/5 | 3 |0AC| 7/6+| 3+ |OBC| 8/6 | 4 Compare M16 fronY E I I
Legend:
Op Hex Operation Code (Leading '1' not shofor two-byte opcodes) EA Effective Address
~ Number of MPU Cycles (6809 emulation / naji C Value of Carry faig in CC
Number of Program Bytes r0 First register (source) operand
18 8-bit Immediate &lue rl Second rgister (destination) operand

116 16-bit Imnmediate a&lue
M8 8-bit value in Memory (may also include Immediatdues)
M16 16-bit value in Memory (may also include Immediatdues)

¢ Status fag Set ifTRUE, Cleared otherwise
- Status g NotAffected by operation

Instructions in shadedws are not eailable on 6809 microprocessors

6809 / 6309 Programming Aid continued
Addressing Modes

Immediate Direct Indexed ! Extended Inherent 53210

Instr. | Forms [Op| ~ |# |Op| ~ | # |Op| ~ | # |Op| ~ |# |Op| ~ | # Description H|N|Z|V|C
COM COMA 43| 2/1| 1 |A=A -t t0]1
COMB 53| 21| 1 |B=B -1t t|0Of1

COMD 043| 3/2| 2 |[D=D -1t t(0Of1

COME 143| 3/2| 2 |E=E -t t[0]1

COMF 153| 3/2| 2 |F=F -1t t|(0f1

COMW 053] 3/2| 2 |W=W -1t t(0Of1

COM 03| 6/5| 2 |63 6+ | 2+|73]| 76| 3 M8 =M8 -t t0]1

CWAI 3C | 22/20| 2 CC = CC & 18 ; Wait for interrupt See Note 7
DAA 19| 2/1 | 1 |DecimalAdjustA -l e8]t
DEC DECA 4A | 2/1| 1 |A=A-1 -lrprfeg-
DECB 5A| 2/1| 1 |B=B-1 L3 S O

DECD 04A| 3/2| 2 |[ID=D-1 A

DECE 14A| 3/2| 2 |[E=E-1 -lrpefeg-

DECF 15A(3/2| 2 |F=F-1 O I B I

DECW 05A(3/2| 2 |[W=W-1 A

DEC OA| 6/5| 2 |6A| 6+ |2+ |7A| 7/6 | 3 M8=M8-1 -l

DIV DIVD 18D| 25 | 3 |19D|27/26 3 |1AD| 27+ | 3+ |1BD| 28/27| 4 B=D+M8; A=modulo SeeNote12 - |t | t|t|9
DIVQ 18E| 34 | 4 |19E|(36/35 3 |1AE| 36+ | 3+ |1BE|37/36 4 W =Q + M16; D =moduloSee Note 14 - | ¢t | t| ¢ |9

EIM #18, EA 05| 6 3 |65 7+ | 3+]| 75 7 4 M8 = M8 xor I8 -t s|O] -
EOR |EORA |8 2 | 2|98| 43| 2 |A8| 4+ |2+|B8| 54 |3 A=A O M8 -lsfe]of-
EORB c8| 2 2 |D8| 43| 2 |E8| 4+ | 2+ | F8| 5/4 | 3 B=B O M8 -1t 2|0 -

EORD 088| 5/4 | 4 |098| 7/5 | 3 |0A8| 7/6+| 3+ |0B8| 8/6 | 4 D=D 0O M16 -t s]O]-

EORR 036| 4 3 rl=r00 r1 See Note 2 -t e]O]-

EXG ro, r1 1E| 8/5 | 2 M o rl See Note 2 - - - -
INC INCA 4C| 2/1| 1 |A=A+1 L T I N
INCB 5C| 2/1| 1 |[B=B+1 R

INCD 04C| 3/2| 2 |[D=D+1 A

INCE 14C| 3/2 | 2 |E=E+1 L B I B

INCF 15C| 3/2| 2 |F=F+1 EO A o I

INCW 05C| 3/2| 2 [W=W+1 R

INC OC| 6/5| 2 |6C| 6+ |2+ |7C| 7/6 | 3 M8 =M8 +1 -l -

JMP OE| 3/2 | 2 |6E| 3+ |2+ |7E| 4/3 | 3 PC = Efective Address R
JSR 9D | 7/6 | 2 |AD| 7/6+| 2+ |BD| 8/7 | 3 Jump to Subroutine -l
LD LDA 86 2 2 |96 4/3 |2 |A6| 4+ |2+ |B6| 54| 3 A=M8 -(tf{t]O]-
LDB C6| 2 2 |D6|4/3 |2 |E6| 4+ |2+ |F6| 5/4 | 3 B = M8 E N O O

LDD CC| 3 3 |DC| 54| 2 |EC| 5+ |2+ |FC| 6/5 | 3 D =M16 -lt]t]0]-

LDE 186| 3 3 |196| 5/4 | 3 |1A6| 5+ | 3+ |1B6| 6/5 | 4 E = M8 -{t]2]0]-

LDF 1C6| 3 3 |1D6| 5/4 | 3 |1E6| 5+ | 3+ |1F6| 6/5 | 4 F=M8 -1t]t|O]-

LDMD 13D| 5 3 MD =18 =l-1-1-1-

LDQ CD| 5 5 |oDC| 8/7 | 3 |[OEC| 8+ | 3+ |OFC| 9/8 | 4 Q =M32 -t |Of-

LDS OCE| 4 4 |ODE| 6/5 | 3 |OEE| 6+ | 3+ |OFE| 7/6 | 4 S = M16 -1t |0]-

LDU CE| 3 3 |DE| 54 |2 |EE| 5 |2+ |FE| 6/5 | 3 U =M16 -]t |0f-

LDW 086| 4 4 |096| 6/5 | 3 |0A6| 6+ | 3+ |0B6| 7/6 | 4 W = M16 -1t |0f-

LDX 8E| 3 3 |9E |54 |2 |AE| 5+ |2+ |BE| 6/5 | 3 X =M16 -t]t |0]-

LDY 08E| 4 4 |09E| 6/5 | 3 |0AE| 6+ | 3+ |OBE| 7/6 | 4 Y =M16 -t [t]O]-

LDBT 136| 7/6 | 4 R.dstBit = M8.srcBit See Note 3
LEA LEAS 32| 4+ | 2+ S = Efective Address -- -0
LEAU 33| 4+ | 2+ U = Effective Address -l- -]

LEAX 30| 4+ | 2+ X = Effective Address S EEAERE

LEAY 31| 4+ | 2+ Y = Effective Address SRR
s sl oy o= L

B

LSLD 048] 32 | 2 MDS} IEI‘_ED:[%]:DE‘ R D P P P

LSL 08|6/5 |2 |68] 6+ |2+ |78| 76 |3 n 0 8|t |ttt

LSR LSRA 44 | 2/]1 | 1 Oft|-112
LSRD ona| 2 | 2 | & = lof+|- I:

D 0—» > . 8=
LSRW 054| 3/2 | 2 W Q:I:[D:g g -0 |- |t
LSR 04|65 |2 |64] 6 |2+ |74 |76 |3 M8 " 0 -lo]e]- 1

~ 147 -

6809 / 6309 Programming Aid continued
Addressing Modes

Immediate Direct Indexed ! Extended Inherent 53210
Instr. | Forms |Op| ~ | # |Op| ~ |# |Op| ~ | # |Op| ~ |# |Op| ~ | # Description H|IN|Z|V|C
MUL MUL 3D | 11/10, 1 |D=A*B (unsigned) -l-1t-19
MULD 18F| 28 | 4 |19F|30/29 3 |1AF| 30+ | 3+ |1BF|31/30 4 Q=D *M16 (signed) -1t 6[-]0
NEG NEGA 40| 2/1| 1 |[A=A+1 8ttt
NEGB 50| 2/1| 1 |B=B+1 8lt|t|t]t
NEGD 040 3/2| 2 |ID=D+1 S
NEG 00| 6/5| 2 | 60| 6+ | 2+| 70| 7/6 | 3 M8 =M8 +1 8ttt
NOP 12| 2/1 | 1 | No Operation - -] - -
oM #18, EA 01| 6 3|61 7+ |3+ | 71| 7 M8 =M8 | 18 -t t]0]-
OR ORA 8A| 2 2 |9A | 4/3 AA| 4+ | 2+ |BA| 5/4| 3 A=A|M8 -1t t|0f -
ORB CA| 2 2 |DA| 4/3| 2 |EA| 4+ | 2+ |FA| 5/4 | 3 B=B|M8 -1t t|Of-
ORCC 1A| 3 2 CC=CC|I8 See Note 7
ORD 08A| 5/4 | 4 |09A| 7/5 | 3 |0AA| 7/6+| 3+ |OBA| 8/6 | 4 D =D | M16 -1t t|Of -
ORR 035 4 | 3 ri=r1|r0 See Note 2 -t t|O]-
PSH PSHS 34| 5/4+| 2 Push rgisters onto S stackSee Note 4 | - | - | - | - | -
PSHU 36| 5/4+| 2 Push rgisters onto U stackSee Note 4 | - | - | - | - | -
PSHSW 038| 6 2 | PushW onto S stack -l - -] -]
PSHUW 03A| 6 2 | Pushw onto U stack -]
PUL PULS 35| 5/4+| 2 Pull registers from S stack SeeNote 4 | - | - | - | - | -
PULU 37| 5/4+| 2 Pull registers from U stack SeeNote 4 | - | - | - | - | -
PULSW 039 6 2 | PullW from S stack S I B B
PULUW 03B| 6 2 | PullW from U stack - -
ROL ROLA 491 21| 1 SRR
ROLB 5921114 |_ AR EA R
ROLD 049| 32| 2 | D |:|<—|:|:|:[%]:|:|:|<J SRR
ROLW 059 3/2| 2 | ms c by, bo R I I I I
ROL 09| 6/5| 2 |69 6+ |2+|79]| 7/6 | 3 R
ROR RORA 46| 2/1 | 1 A
RORB 56| 21| 1|A R
RORD o46| 32| 2 | B } |_> |:|_,|:|:|:[%]:|:|:|J B N
RORW 056(3/2 | 2 [W C br b |-|t|t]-]®
ROR 06| 6/5| 2 |66| 6+ |2+]|76]| 76| 3 R A I
RTI 3B | 15/27| 1 |Return from Interrupt (when CC.E = 1) See Note 7
3B| 6 1 | Return from Interrupt (when CC.E = 0) See Note 7
RTS 39 | 5/4 | 1 |Return from Subroutine -0
SBC SBCA 82| 2 2 192|4/3 |2 |A2| 4+ | 2+ |B2| 5/4 | 3 A=A-M8-C 8lt|t]t]s
SBCB C2| 2 |2 |D2|4/3|2 |E2| 4 |2+ |F2| 5/4 | 3 B=B-M8-C 8lt|t|t]|s
SBCD 082| 5/4 | 4 [092| 7/5 | 3 |0A2| 7/6+| 3+ |0OB2| 8/6 | 4 D=D-M16-C S B N A S
SBCR 033(4 3 r1=r1-r0-C See Note 2 EO I O o
SEX SEX 1D | 2/1 | 1 |Sign Extend B inté\ R
SEXW 14| 4 1 |Sign ExtendV into D SO I I I
ST STA 97 | 413 | 2 |A7| 4+ |2+ |B7| 5/4 | 3 M8 =A -[t]1]0]-
STB D7 | 43 | 2 |E7| 4+ |2+ |F7 | 5/4 | 3 M8 =B -t t|0f-
STD DD|5/4 | 2 |ED| 5+ |2+ |FD| 6/5 | 3 M16 =D -ttt |0f-
STE 197| 5/4 | 3 |1A7| 5+ | 3+ |1B7| 6/5 | 4 M8 = E -1t t|Of-
STF 1D7| 5/4 | 3 |1E7| 5+ | 3+ |1F7| 6/5 | 4 M8 = F -t [t|O]-
STQ 0DD| 8/7 | 3 [OED| 8+ | 3+ |[OFD| 9/8 | 4 M32=Q -lsfs]O]-
STS ODF| 6/5 | 3 |0OEF| 6+ | 3+ |[OFF| 7/6 | 4 M16 =S -lsfe]O]-
STU DF|5/4 |2 |EF| 5+ |2+ |FF | 6/5 | 3 M16 =U -t [t]O0]-
STW 097| 6/5 | 3 |0A7| 6+ | 3+ |[OB7| 7/6 | 4 M16 =W -t]t]|0]-
STX 9F | 5/4 | 2 |AF| 5+ |2+ |BF | 6/5 | 3 M16 = X -t]t]|0]-
STY 09F| 6/5 | 3 |[0OAF| 6+ | 3+ [OBF| 7/6 | 4 M16 =Y -t]t]0]-
STBT 137| 8/7 | 4 M8.dstBit = R.srcBit -t]-|-
SUB SUBA 80| 2 2 |90 | 4/3 |2 |AO| 4+ |2+ |BO |54 |3 A=A-M8 8t |s]s]2
SUBB Co| 2 2 |[DO|4/3 |2 |EO| 4+ |2+ |FO | 5/4 | 3 B=B-M8 S I A A
SUBD 83 |4/3 |3 |93 |6/4 |2 |A3|6/5 |2+ |B3|7/5]|3 D =D - M16 AR ERE
SUBE 180(3 3 |190| 5/4 | 3 |1A0| 5+ |3+ |1BO| 6/5 | 4 E=E-M8 8t |t]t
SUBF 1Co| 3 | 3 |1DO| 5/4 | 3 |1EO| 5+ |3+ |1FO| 6/5 | 4 F=F-M8 8|t |t]s |2
SUBR 032| 4 3 r1=r1-r0 See Note 2 EO R IO [
SUBW 080(5/4 | 4 |090| 7/5 | 3 |0AO| 7/6+ | 3+ |OBO| 8/6 | 4 W =W -M16 SO I I A

— 148 -

6809 / 6309 Programming Aid continued

Addressing Modes
Immediate Direct Indexed ! Extended Inherent 53210
Instr. | Forms |Op| ~ | # |Op| ~ |# |Op| ~ | # |Op| ~ |# |Op| ~ | # Description H|IN|Z|V|C
SWiI SWI 3F |19/21 1 | Software Interrupt 1 See Note 5 - -] - -
SWI2 03F|{20/22 2 | Software Interrupt 2 See Note 5 - -] - -
SWI3 13F|20/22 2 | Software Interrupt 3 See Note 5 - -] -
SYNC 13 |24/23 1 | Synchronize to Interrupt Co I N
TFM rO+, rl+ |138|6+3n| 3 Block Move Incrementing See Note 10| - | - [1| - | -
r0-, ri- 139 6+3n| 3 Block Move DecrementingSee Note 10| - | - | 1| - | -
ro+, rl 13A[(6+3n| 3 Block Write to address ~ SeeNote 10| - | - [1| - | -
ro, rl+ 13B| 6+3n| 3 Block Read from address See Note 10| - | - | 1| - | -
TFR ro, ri 1F| 6/4 | 2 rl=r0 See Note 2 - -] - -
TIM #18, EA OB| 6 3 |6B| 7+ |3+|7B| 7 | 4 Bit Test Memory (18 & M8) -1t | Of -
TST TSTA 4D| 2/1| 1 |TestA -1t | Of -
TSTB 5D| 2/1| 1 |TestB -1t |0 -
TSTD 04D| 3/2 | 2 |TestD -1t |0 -
TSTE 14D| 3/2| 2 |TestE -1t t|Of -
TSTF 15D| 3/2 | 2 |TestF -1t t| 0] -
TSTW 05D| 3/2 | 2 | TestW -t t|Of -
TST OD| 6/4| 2 |6D| 6/5+| 2+ [7D| 7/5| 3 Test M8 -t t]Of-
Relative Relative
Addressing Addressing
Instr. | Forms |Op| ~ | # Description Instr. | Forms |Op| ~ | # Description
BCC BCC 24| 3 | 2 |BranchlfC=0 BLT BLT 2D| 3 | 2 |Branchlf<0
LBCC 024| 5(6)] 4 | LongBranchIfC=0 (11 LBLT 02D| 5 (6)| 4 |LongBranchIf<0 11
BCS BCS 25| 3 | 2 |BranchlfC=1 BMI BMI 2B| 3 | 2 |BranchIfN=1
LBCS 025| 5(6)] 4 | LongBranchIfC=1 13 LBMI 02B| 5(6)| 4 |LongBranchIfN=1 11
BEQ BEQ 27| 3 | 2 |Branchlfz=1 BNE BNE 26| 3 2 |BranchIfZ=0
LBEQ 027| 5(6)] 4 | LongBranchlIfz=1 11 LBNE 026| 5(6)| 4 |LongBranchlIfZ=0 13
BGE BGE 2C| 3 | 2 | Branchlfz0 BPL BPL 2A| 3 | 2 |BranchIfN=0
LBGE 02C| 5(6)] 4 | Long Branch 120 (11 LBPL 02A| 5(6)| 4 |LongBranchIfN=0 11
BGT BGT 2E| 3 | 2 |BranchlIf>0 BRA | BRA 20| 3 | 2 |Branch unconditionally
LBGT 02E| 5(6)] 4 | Long Branch If>0 1y LBRA 16 | 5/4 | 3 |Long Branch unconditionally
BHI BHI 22| 3 | 2 | Branch If higher BRN | BRN 21| 3 | 2 |Branch neer (no-op)
LBHI 022| 5(6)] 4 | Long Branch If higher 13 LBRN 021| 5 4 | Long Branch neer (no-op)
BHS BHS 24| 3 | 2 | Branch If higher or same BSR BSR 8D | 7/6 | 2 | Branch to subroutine
LBHS 024| 5(6)] 4 | Long Branch If higher or same (11) LBSR 17| 9/7 | 3 | Long Branch to subroutine
BLE BLE 2F| 3 | 2 | Branchlf<0 BvVC BvVC 28| 3 | 2 |BranchlIfv=0
LBLE 02F| 5(6)] 4 | Long Branch li<0 11 LBVC 028| 5(6)| 4 |LongBranchlIVv=0 13
BLO BLO 25| 3 | 2 | Branch If lover BVS BVS 29| 3 | 2 |BranchlIfv=1
LBLO 025 5(6)] 4 | Long Branch If lover (11 LBVS 029| 5(6)| 4 |LongBranchliv=1 11
BLS BLS 23| 3 | 2 | Branch If lover or same
LBLS 023| 5(6)] 4 | Long Branch If lever or same 13
Notes:
1. Thelndexed column preides basealues for the MPUyles and byte count$o obtain totals, add theles from théndexed Addr essing ModeTable onpagel50.
2. r0 and r1 may be grpair of 8-bit rgisters, or ay pair of 16-bit rgisters. Mixing rgisters of diferent sizes (TFR, EXG) bebes diferently on the 6309 than on the
6809.The ZEPRO register (6309 only) may be used in combination with aiier rgister Undefned rgister codes produce alue of FF or FFFF on the 6809.
3. The bit manipulation instructions (other than STBT) do nigicathe CC rgister unless it is speafil as the taet register in which case only the destination bit ma
be afected.Tamet rayisters for the bit manipulation instructions are limitedt® and CC.
4. The PSH and PUL instructions require one additiopelecfor eactbyte pushed or pulled.
5. SWiI sets the | and Faiys in CC. SWI2 and SWI3 do nofeddt | and F
6. The MULD instruction sets the Zaffj in CC when the high-ordeiowd (D) is zero, een if the lav-order vord (W) is non-zero.
7. The CC rgister is set as a direct result of the instruction.
8. Value of the Condition Code bit is undedd.
9. Special cases:df MUL, Carry set only if bit 7 is 1.d¥ DIVD and DIVQ, Carry is set only if bit 0 is 1
10. Source and destinationgisters for th&' FM instruction are limited to XY, U, S and DTheW register alvays specis the byte counT.FM is the only instruction that
can be interrupted before it completes.
11. All conditional long branches require gotes if the branch is tak or 5 gcles if the branch is not tak.
12.The DIV instructions perform signedvision. DIVD executes in | faer g/cle if a two's-complementw@rflow occurs. If a Range error occurs then the destination

registers are not modéd, the instructiomecutes in fever g/cles (13 faver for DIVD, 21 faver for DIVQ), theV flag is set and the N, Z and @dk are cleared.

~ 149 -

Indexed Ad dressing Mode Table

Non Indirect Indirect
Assembler | Postbyte | + | + | Assembler | Postbyte | + | +
Type Forms Form Opcode ~ | # Form Opcode ~ | #
Constant Oet From R No offset R 1RR00100 | 0 | O [[R] 1RR10100 | 3 | O
(twos complement €det) 5 bit offset (-16 to +15) n,R ORRNNNNn 1 | 0 | notavailable - use 8-bit
8 bit offset (-128 to +127) n,R 1RR0O1000 | 1 | 1 [n,R] 1RR11000 | 4 | 1
16 bit ofset (-32768 to +32767 n,R 1RR01001 |4/3 2 [nR] 1RR11001 |7/6| 2
Constant Cfset Fromw No offset W 10001111 0O W] 10010000 3|0
(twos complement éget) 16 bit ofset nwW 10101111 2|2 [n,W] 10110000 51| 2
Accumulator Ofset From R A - Accumulator ofset AR 1RR00110 [1 | O [AR] 1RR10110 | 4 | O
(twos complement €get) B - Accumulator ofset B,R 1RR00101 110 [B,R] 1RR10101 | 4 | O
D - Accumulator ofset D,R 1RR01011 |4/2| 0 [D,R] 1RR11011 (7/5| O
E - Accumulator ofset ER 1RR00111 1|0 [E.R] 1RR10111 | 4 | O
F - Accumulator ofset F.R 1RR01010 1|0 [F.R] 1RR11010 | 4 | O
W - Accumulator ofset W,R 1RR01110 1|0 [W,R] 1RR11110 | 4 | O
Auto Increment/Decrement of R Post-Increment by 1 R+ 1RR00000 (2/1] 0 | not allowed
Post-Increment by 2 JR++ 1RR00001 (3/2| 0 [[R++] 1RR10001 |6/5| 0
Pre-Decrement by 1 -R 1RR00010 |2/1| O | not allowed
Pre-Decrement by 2 R 1RR0O0011 |3/2| 0 [-R] 1RR10011 (6/5| 0
Auto Increment/Decrement ¥ Post-Increment by 2 W+ 11001111 110 [[W++] 11010000 410
Pre-Decrement by 2 W 11101111 1|0 [,—-W] 11110000 4 |0
Constant Oset From PC 8 bit offset (-128 to +127) n,PCR 1XX01100 1|1 | [nPCR] 1XX11100 | 4 | 1
(twos complement édet) 16 bit ofset (-32768 to +32767] n,PCR 1XX01101 (5/3| 2 | [n,PCR] 1XX11101 |8/6| 2
Extended Indirect 16 bit address [n] 10011111 |5/4| 2
RR Register XX = Don't Care +and + these columns indicate the additional
00 X ~ # number of MPU gcles and program bytes
01 Y for the particular ariation.
10 U
11 S Indexing modes in shadedws are not ailable on 6809 microprocessors.

Inter -Register P ostb yte

|b7'

:b4|b3:

'bo|

Source Raister (r0)

Destination Register (rl)

Code Register Code Register
0000 D 1000 A
0001 X 1001 B
0010 Y 1010 cC
0011 U 1011 DP
0100 S 1100 0
0101 PC 1101 0
0110 w 1110 E
0111 \% 1111 F

On 6809microprocessorshe shaded Ryster Codes
produce a &lue of FF or FFFF (all bits set).

Bit-Manipulation P ostb yte (6309 only)

— 150 -

[67 b6| b5 “b3[b2 bol
| |l |
—— Destination Bit Number (0 - 7
Source Bit Number (0 - 7)
Tamet Register
Code Register
00 CcC
01 A
10 B
11 Invalid

Programming Model

Accumulator A Accumulator B Accumulator E Accumulator F

Accumulator D Accumulator W

Accumulator Q

Index Register X

CC Register Bits -
Index Register Y

E Entire reister state staek
F FIRQ interrupt maskd User Stack Pointer U
H Half-Carry -
| IRQ interrupt maskd System Stack Pointer S
N Negative result (tves complement) Program Counter PC
Z Zero result :
vV Overflow Transfer \&lue Register V
C Carry (or borrav) Zero Rejister 0
MD Register Bits Direct Fage Rgister DP
/0 Divide-by-zero Exception Condition Codes Rester CC|E|F|[H| I [N|Z |V |C
IL lllegal Instruction Exception]
FM FIRQ uses IRQ stacking method (Entire state) Mode Register MD (/0 | IL FM INM
NM Native Mode (reducedycles,W stacled on interrupts) b7 b0

The /0 and IL bits of the MD géster can only be read once after an erxaeption occursThey are reset to 0 aftexecuting a BITMD
instruction.The FM and NM bits of the MD gister are write-onlyUsing the BITMD instruction to test these bitways produces zero.

Register Stac king Or der

Lower MemoryAddresses

Stack Ptr after stacking— cC A e
A 5 PSH / PUL Postbyte
= —TT
B 2 [b7 b6 b5 b4 b3 b2 b1 bol
Stacled on Interrupts only
when the NM bit is set in MD} E I— CcC
6309 Only F A
DP B
X.H DP
X.L X
Y. H Y
Y.L L;’g’
US.H
Uus.L o)
B
PC.H O
i 16
PC.L z v

Stack Ptr before stacking—»

Higher MemoryAddresses

When the FM bit in the MD gster is set, the Entiregister set is stagd upon an FIRQ interrupt, otherwise only CC and PC areestack
TheTransfeValue rgisterV is never stacked upon interrupts. No instructions arevpded to directly push or pull thé register
The E and F accumulators are sttkipon interrupts only if the NM bit is set in the M@ister

The PSHS, PULS, PSHU and PULU instructions do not permit the E and F accumulators (W) to leel Sfrexst rgisters can be pushed and
pulled together using the PSHSRSHUW PULSW and PULUW instructions, or imitilually using theduto Increment/Decrement Ingiag
modes with STE, STEDE, LDF (although these will ka an efiect on the Condition Codes).

- 151 -

6809 / 6309 Opcode Map

DIRECT REL A/D/E| B/W/F| INDEX | EXTND | IMMED | DIRECT| INDEX | EXTND | IMMED | DIRECT| INDEX | EXTND
$0_ $1_ $2_ $3_ $4_ | $5 | $6_ | S7_ | $8_| $9_| SA_| $B_| $C_| $D_ | $E_ | S$F_

0| NEG |PacE2| BRA | LEAX [NEGA| NEGB| NEG | NEG | susa | susa | suea | suea | suse | suss | suBs | sues
$10 0 ADDR | NEGD SUBW | SUBW | SUBW | SUBW
$11 0 BAND SUBE | SUBE | SUBE | SUBE | SUBF | SUBF | SUBF | suBr

1| om |[PacE3| BRN | LEAY oM | om | cmra | cmea | empa | evra | evps | cmpe | evmPe | cvPB
$10 _1 LBRN | ADCR cMPW [cmPw [cmPw | cmPw
$11 1 BIAND CMPE | cMPE | cMPE | cMPE | cMPF [cMPF | cMPF | cMPF

2| am | nop | BHI | LEAS AM [am | sBca| sBca| sBca | sBca| sBee | sBes | sBeB | sBeB
$10 2 LBHI | SuBR SBCD | SBCD | SBCD | SBCD
$11 2 BOR

3| com | syne| BLs | Leau [coma| comB| com | com | susp | susb | suep | susp | abpD | ADDD | ADDD | ADDD
$10 3 LBLS | SBCR | cOMD | comMw CMPD [cMPD | cMPD | cMPD
$11 3 BIOR | COME | COMF cMPU [cmpu | cmPu | cmPU

4| Lsr | sexw/|BHsicc| psHs| Lsra | Lsre | LsrR | Lsr | anpA | ANDA | ANDA | ANDA | ANDB | ANDB | ANDB | ANDB
$10 _4 LeHs/cc| ANDR | LSRD | LSRwW ANDD | ANDD | ANDD | ANDD
$11 4 BEOR

5] Emm BLo/cs| PULS EmM [Em | BiTa | BiTa | BiTA | BITA | BITB | BITB | BITB | BITB
$10 5 eLorcs| ORR BITD | BITD | BITD | BITD
$11 5 BIEOR

6] rROR | LBRA [BNE | PsHU| rRORA| RORB| ROR | ROR | LDA | DA | DA | DA | DB | DB | DB | LDB
$10 6 LBNE | EORR | RORD | RORW LDW | LDW | LDW | LDW
$11 6 LDBT LDE | DE | DE | LDE | LbF | LDF | LDF | LDF

7| aAsr | LBsr| BEQ | PuLu | ASRA | AsrRB| AsSrR | Asr s’ | s;m | sTA stB [sTB | STB
$10 _7 LBEQ [CMPR| ASRD STW | sTw | sTw
$11 7 STBT STE | sTE | sTE STF | sTF | sTF

8] LsL BVC LSLA | tstB [st | LsL | Eora| EoRA | EORA| EORA| EORB | EORB | EORB| EORB
$10 _8 LBVC [PSHSW LSLD EORD | EORD | EORD | EORD
$11 8 TFM r+,r+

9] roL | bAA | Bvs | Rrs | roLa | rOLB | rRoOL | roL | aDca | aDca | Aabca | apca | apcs | abcB | ADcB | Abcs
$10 9 LBVS | PULSW| ROLD | ROLW ADCD | ADCD | ADCD | ADCD
$11 9 TFM -1

Al pec | orcc| BPL | ABx | DEcA| DECB| DEC | DEC | ORA | ORA | ORA | ORA | ORB | ORB | ORB | ORB
$10 _A LPBL | PSHUW| DECD | DECW ORD | ORD | ORD | ORD
$11 _A TFMr+r| DECE | DECF

B| ™™ BMI | RTI TiMm | TIM | ADDA | ADDA | ADDA | ADDA | ADDB | ADDB | ADDB | ADDB
$10 _B LBMI |PULUW ADDW | ADDW | ADDW | ADDW
$11 B TFM 1 r+ ADDE | ADDE | ADDE | ADDE | ADDF | ADDF | ADDF | ADDF

c| inc [anpec| BeE | cwal | inca | IneB [Inc | Inc | empx | cmpx [empx | ecmPx| ob | op | Lop | Lop
$10 _C LBGE INCD | INCW CMPY | cMPY | cmpY | cmPy LDQ | LDQ | LDQ
$11 _C BITMD | INCE | INCF CMPS| CMPS| CMPS| CMPS

D| 1sT | sex | BT [muL | Tsta | TstB| TST [TsT | BSR | usrR | JsrR | usrR | bQ | stD | sTD [smD
$10 _D LBLT TSTD | TsTW STQ | sTQ | sTQ
$11 D LDMD | TSTE | TSTF DIVD | DIVD | DIVD | DIVD

E| P | Exc | BoT P [omp | tbx | tbx | ox | wox | tou | Lbu | Lbu | Lbu
$10 _E LBGT DY | by | DY | DY | DS | DS | LDS | LDS
$11 _E DIVQ | DIVQ | DIVQ | DIVQ

Fl ctcr | TFR | BLE | swi | cLra | cLrB| cLrR | cLRr STX | STX | sTX STU | STU | SsTU
$10 _F LBLE | Swi2 | CLRD | CLRW STY | sTY | sTY sTS | sTs | sTs
$11 _F SWI3 | CLRE | CLRF MULD | MULD | MULD | MULD

Shaded Instructions argalable on 6309 microprocessors only Undefned opcodes generate angdlélnstruction &ception on the 6309 only

6809 Undefi ned Opcode Beha vior

Unlike the 6309 microprocesstine 6809 does not trap i@l instructionsThis section describes the betwa of the 6809 when ibe&cutes
an undefied opcode. In most cases, the CPU bebas if it hadyecuted the instruction whose opcodéue is either one less or one more
than that of the undefied opcodeThe Opcode Map and notes shobelav describe the speaifbehaior of each undefied opcodeThe
same behaor will result when an undefed opcode is preceded byagk 2 ($10) or &e 3 ($11) selectoexcept that 1 additional MPU
cycle is consumed.

DIRECT REL ACC.A | ACC.B | INDEX | EXTND | IMMED | DIRECT| INDEX | EXTND | IMMED | DIRECT| INDEX | EXTND
$0_ | $1_ | $2_ | $3_ | $4_ | $5_ | $6_ | $7_| $8_ | $9_ | A | $B_ | $C_| $D_| SE_ | SF_
Y LBRA*
1| NEG NEGA | NEGB| NEG | NEG
2 | NEG/ NEGA/ | NEGB/| NEG/ | NEG/
comt COMA!| comB!| com! | com!
3
_4 HCF?
5| LSR | HcR LSRA | LSRB| LSR | LSR
6
7 6 6
8 3 ANDCC®
9
_A
B | DEC | NOP DECA | DECB| DEC | DEC
_C
b HCF?
_E RESET| CLRA | CLRB
F 8 8

1. Undefined opcodes in row 2 execute &G instruction when the Carry bit in CC is 0, and &CGM instruction when the Carry bit is 1.

2. Opcodes $14, $15 and $CD all cause the CPU to stop functioning no@radyr more of these may be theF (Halt and Catch Fire) instruction.
The HCF instruction was provided for manufacturing test purposes. Its causes the CPU to halt execution and enter a mode Adldreis lihes
are incrementally strobed.

3. Opcode $18 &kcts only the Condition Codes register (C3)e value in the Overflow bit (V) is shifted into the Zero bit (Z) while the value in the IR
Mask bit (1) is shifted into the Half Carry bit (HAll other bits in the CC register are cleared. Execution of this opcode takes 3 MPU cycles.

4. The 6809 will execute opcode $20 as an LBR#en it is preceded by a Page 2 selector (§11%).6309 considers this an illegal instruction.
5. Opcode $38 behaves just like WidDCC instruction ($1C), except for the fact that it uses 1 additional MPU cycle (for a total of 4).

6. Opcodes $87 and $C7 read and discard an 8-bit Immediate operand which follows theTdpeudie of the immediate byte is irrelevarite
Negative bit (N) in the CC register is always set, while the Zero (Z) and Overflow (V) bits are always cleared. No other bits in the Condition (
register are &cted. Each of these opcodes execute in 2 MPU cycles.

7. Opcode $3E is similar to tH@WI instruction. It stacks the Entire register state, sets the | and F bits in the Condition Codes register and then Ic
PC register with an address obtained fromRESET vector ($FFFE:F)This could potentially be used as a fourth Software Interrupt instruction, <
long as the code invoked by the Reset vector is ablefevetitiate between a software reset and a hardware reset. It doeseN®d Entire bit (E) in
the CC register prior to stacking the register sftés could cause aRTI instruction for a Reset handler to fail to operate as expélitesiopcode
uses the same number of MPU cycleS®4 (15).

8. Opcodes $8F and $CF are STX Immediate and STU Immediate respecEive$e instructions are partially functiond@lvo bytes of immediate data
follow the opcodeThe firstimmediate byte is read and discarded by the instru@ti@iower half (LSB) of the X or U register is then written into the

second immediate byt&€he Negative bit (N) in the CC register is always set, while the Zero (Z) and Overflow (V) bits are always cleared. No ¢
bits in the Condition Codes register arfeefed. Each of these opcodes execute in 3 MPU cycles.

NOTE:

This information vas obtained throughxperimentation and may not be completely accurate. No information aheuhé®809 operates when undefil opcodes are
executed vas @er published by Motorola.

— 153 -

	Motorola 6809 and Hitachi 6309 Instruction Sets
	ABX
	ADC (8 Bit)
	ADCD
	ADCR
	ADD (8 Bit)
	ADD (16 Bit)
	ADDR
	AIM
	AND (8 Bit)
	ANDCC
	ANDD
	ANDR
	ASL (8 Bit)
	ASLD
	ASR (8 Bit)
	ASRD
	BAND
	BCC
	BCS
	BEOR
	BEQ
	BGE
	BGT
	BHI
	BHS
	BIAND
	BIEOR
	BIOR
	BIT (8 Bit)
	BITD
	BITMD
	BLE
	BLO
	BLS
	BLT
	BMI
	BNE
	BOR
	BPL
	BRA
	BRN
	BSR
	BVC
	BVS
	CLR (accumulator)
	CLR (memory)
	CMP (8 Bit)
	CMP (16 Bit)
	CMPR
	COM (accumulator)
	COM (memory)
	CWAI
	DAA
	DEC (accumulator)
	DEC (memory)
	DIVD
	DIVQ
	EIM
	EOR (8 Bit)
	EORD
	EORR
	EXG
	EXG
	INC (accumulator)
	INC (memory)
	JMP
	JSR
	LBCC
	LBCS
	LBEQ
	LBGE
	LBGT
	LBHI
	LBHS
	LBLE
	LBLO
	LBLS
	LBLT
	LBMI
	LBNE
	LBPL
	LBRA
	LBRN
	LBSR
	LBVC
	LBVS
	LD (8 Bit)
	LD (16 Bit)
	LDBT
	LDMD
	LDQ
	LEA
	LSL (8 Bit)
	LSLD
	LSR (8 Bit)
	LSR (16 Bit)
	MUL
	MULD
	NEG (accumulator)
	NEG (memory)
	NOP
	OIM
	OR (8 Bit)
	ORCC
	ORD
	ORR
	PSH
	PSHSW
	PSHUW
	PUL
	PULSW
	PULUW
	ROL (8 Bit)
	ROL (16 Bit)
	ROR(8 Bit)
	ROR (16 Bit)
	RTI
	RTS
	SBC (8 Bit)
	SBCD
	SBCR
	SEX
	SEXW
	ST (8 Bit)
	ST (16 Bit)
	STBT
	STQ
	SUB (8 Bit)
	SUB (16 Bit)
	SUBR
	SWI
	SYNC
	TFM
	TFR
	TFR
	TIM
	TST (accumulator)
	TST (memory)
	6309 Inter-Register Operations
	Determining the 6309 Execution Mode
	Programming Aid
	Opcode Map
	6809 Undefined Opcode Behavior

